The E-business organization of enterprise comes into being due to the demand of era. With the development of the society, it has been developing from H type to U Mode, to the shape of matrix and then to the shape of t...The E-business organization of enterprise comes into being due to the demand of era. With the development of the society, it has been developing from H type to U Mode, to the shape of matrix and then to the shape of the network. The evolution of these modes is derived from the necessity to serve customers and society better. This is the current E-business organization mode.展开更多
Mobile block system is a new type of block technology based on the theory of interval block. This article focuses on the analysis of safety key points, the efficient use of emergency time, the maximum efficiency of mo...Mobile block system is a new type of block technology based on the theory of interval block. This article focuses on the analysis of safety key points, the efficient use of emergency time, the maximum efficiency of mobilizers, to reduce the loss of emergency incidents and casualties.展开更多
Fouling behavior along the length of membrane module was systematically investigated by performing simple modeling and lab-scale experiments of forward osmosis (FO) membrane process. The flux distribution model deve...Fouling behavior along the length of membrane module was systematically investigated by performing simple modeling and lab-scale experiments of forward osmosis (FO) membrane process. The flux distribution model developed in this study showed a good agreement with experimental results, validating the robustness of the model. This model demonstrated, as expected, that the permeate flux decreased along the membrane channel due to decreasing osmotic pressure differential across the FO membrane. A series of fouling experiments were conducted under the draw and feed solutions at various recoveries simulated by the model. The simulated fouling experiments revealed that higher organic (alginate) fouling and thus more flux decline were observed at the last section of a membrane channel, as foulants in feed solution became more concentrated. Furthermore, the water flux in FO process declined more severely as the recovery increased due to more foulants transported to membrane surface with elevated solute concentrations at higher recovery, which created favorable solution environments for organic adsorption. The fouling reversibility also decreased at the last section of the membrane channel, suggesting that fouling distribution on FO membrane along the module should be carefully examined to improve overall cleaning efficiency. Lastly, it was found that such fouling distribution observed with co-current flow operation became less pronounced in counter- current flow operation of FO membrane process.展开更多
文摘The E-business organization of enterprise comes into being due to the demand of era. With the development of the society, it has been developing from H type to U Mode, to the shape of matrix and then to the shape of the network. The evolution of these modes is derived from the necessity to serve customers and society better. This is the current E-business organization mode.
文摘Mobile block system is a new type of block technology based on the theory of interval block. This article focuses on the analysis of safety key points, the efficient use of emergency time, the maximum efficiency of mobilizers, to reduce the loss of emergency incidents and casualties.
基金supported by the World Class University Program (Case Ⅲ) through the National Research Foundation of Koreafunded by the Ministry of Education, Science and Technology (R33-10046)the Fundamental R&D Program for Technology of World Premier Materials funded by the Ministry of Knowledge Economy, Korea
文摘Fouling behavior along the length of membrane module was systematically investigated by performing simple modeling and lab-scale experiments of forward osmosis (FO) membrane process. The flux distribution model developed in this study showed a good agreement with experimental results, validating the robustness of the model. This model demonstrated, as expected, that the permeate flux decreased along the membrane channel due to decreasing osmotic pressure differential across the FO membrane. A series of fouling experiments were conducted under the draw and feed solutions at various recoveries simulated by the model. The simulated fouling experiments revealed that higher organic (alginate) fouling and thus more flux decline were observed at the last section of a membrane channel, as foulants in feed solution became more concentrated. Furthermore, the water flux in FO process declined more severely as the recovery increased due to more foulants transported to membrane surface with elevated solute concentrations at higher recovery, which created favorable solution environments for organic adsorption. The fouling reversibility also decreased at the last section of the membrane channel, suggesting that fouling distribution on FO membrane along the module should be carefully examined to improve overall cleaning efficiency. Lastly, it was found that such fouling distribution observed with co-current flow operation became less pronounced in counter- current flow operation of FO membrane process.