An operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas(OCFS-C) is developed based on parallelized circulation and wave models. It has been in operation sin...An operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas(OCFS-C) is developed based on parallelized circulation and wave models. It has been in operation since November 1, 2007. In this paper we comprehensively present the simulation and verification of the system, whose distinguishing feature is that the wave-induced mixing is coupled in the circulation model. In particular, with nested technique the resolution in the China's seas has been updated to(1/24)° from the global model with(1/2)°resolution. Besides, daily remote sensing sea surface temperature(SST) data have been assimilated into the model to generate a hot restart field for OCFS-C. Moreover, inter-comparisons between forecasting and independent observational data are performed to evaluate the effectiveness of OCFS-C in upper-ocean quantities predictions, including SST, mixed layer depth(MLD) and subsurface temperature. Except in conventional statistical metrics, non-dimensional skill scores(SS) is also used to evaluate forecast skill. Observations from buoys and Argo profiles are used for lead time and real time validations, which give a large SS value(more than 0.90). Besides, prediction skill for the seasonal variation of SST is confirmed. Comparisons of subsurface temperatures with Argo profiles data indicate that OCFS-C has low skill in predicting subsurface temperatures between 100 m and 150 m. Nevertheless, inter-comparisons of MLD reveal that the MLD from model is shallower than that from Argo profiles by about 12 m, i.e., OCFS-C is successful and steady in MLD predictions. Validation of 1-d, 2-d and 3-d forecasting SST shows that our operational ocean circulation-surface wave coupled forecasting model has reasonable accuracy in the upper ocean.展开更多
Surface miner, a continuous mining machine, is being manufactured in India and abroad owing to enhanced demand of production in various mining industries like coal, limestone, gypsum, bauxite etc. Different types of s...Surface miner, a continuous mining machine, is being manufactured in India and abroad owing to enhanced demand of production in various mining industries like coal, limestone, gypsum, bauxite etc. Different types of surface miners are manufactured today based on cutting drum placement and design specifications. Selective mining without drilling and blasting, high production and small size products are some of the prominent attractive features obtained with these moving marvels. This machine can be used with good efficiency in soft to medium hard rock (100-120 MPa). This paper synthesizes the different applications, equipment models, features offered, operating methods, cutting performance assessment models as well as typical production performance of surface miner in coal and limestone mines of India. Engine hour metre reading, diesel and pick consumptions are linearly influenced by production. The emphasis for future research is also brought out.展开更多
A summer-time shipboard meteorological survey is described in the Northwest Indian Ocean. Shipboard observations are used to evaluate a satellite-based sea surface temperature(SST), and then find the main factors th...A summer-time shipboard meteorological survey is described in the Northwest Indian Ocean. Shipboard observations are used to evaluate a satellite-based sea surface temperature(SST), and then find the main factors that are highly correlated with errors. Two satellite data, the first is remote sensing product of a microwave, which is a Tropical Rainfall Measuring Mission Microwave Imager(TMI), and the second is merged data from the microwave and infrared satellite as well as drifter observations, which is Operational Sea Surface Temperature and Sea Ice Analysis(OSTIA). The results reveal that the daily mean SST of merged data has much lower bias and root mean square error as compared with that from microwave products. Therefore the results support the necessary of the merging infrared and drifter SST with a microwave satellite for improving the quality of the SST. Furthermore, the correlation coefficient between an SST error and meteorological parameters, which include a wind speed, an air temperature, a relative humidity, an air pressure, and a visibility. The results show that the wind speed has the largest correlation coefficient with the TMI SST error. However, the air temperature is the most important factor to the OSTIA SST error. Meanwhile,the relative humidity shows the high correlation with the SST error for the OSTIA product.展开更多
Development of man-packable,versatile marine surface vehicle with ability to rescue a drowning victim and also capable of carrying mission specific sensor is explored.Design thinking methodology is implemented by usin...Development of man-packable,versatile marine surface vehicle with ability to rescue a drowning victim and also capable of carrying mission specific sensor is explored.Design thinking methodology is implemented by using existing equipment/platform with the addition of external attachment to make it a functional product.Iterative prototyping process with extensive testing to achieve user-centric solution.Individual prototypes and their possible sub-configurations with their integration and characteristics are studied and compared with numerical model,inferences obtained are utilised to improve for the next iteration.A novel hinge-clamp assembly enables this marine surface vehicle to operate in the event of an overturn,this phenomenon is further studied with the aid of a mathematical model(Pendulum in a fluid).This research project aims to demonstrate a multi-role unmanned surface vehicle.展开更多
We consider the estimation of three-dimensional ROC surfaces for continuous tests given covariates.Three way ROC analysis is important in our motivating example where patients with Alzheimer's disease are usually ...We consider the estimation of three-dimensional ROC surfaces for continuous tests given covariates.Three way ROC analysis is important in our motivating example where patients with Alzheimer's disease are usually classified into three categories and should receive different category-specific medical treatment.There has been no discussion on how covariates affect the three way ROC analysis.We propose a regression framework induced from the relationship between test results and covariates.We consider several practical cases and the corresponding inference procedures.Simulations are conducted to validate our methodology.The application on the motivating example illustrates clearly the age and sex effects on the accuracy for Mini-Mental State Examination of Alzheimer's disease.展开更多
This paper is concerned with trajectory planning problems for UAVs operating near ground.Most existing studies focus on solving the problem of collision-free trajectory planning between pre-defined path points,but ign...This paper is concerned with trajectory planning problems for UAVs operating near ground.Most existing studies focus on solving the problem of collision-free trajectory planning between pre-defined path points,but ignore the need of navigation method for UAVs working on specific operating surfaces in near-ground space.In this paper,a novel near-ground trajectory planning framework is proposed,where the hybrid voxel-surfel map is developed to model the environment with special attention to the uneven operating surface.To improve the frequency of updates,a probability-based surfel fusion method and a resolution adaptive adjustment method based on the fusion result are proposed in this paper.By using possibility information in the map,a path search method is established to generate the initial trajectory.The trajectory is then further optimized based on map gradient information to generate a final trajectory that tracks the specified operating surface according to the task requirements.Compared with existing methods,the multi-resolution hybrid voxel-surfel map proposed in this paper has advantages in terms of operating efficiency.A series of experiments in simulated and real scenarios validate the effectiveness of the proposed trajectory planning framework.展开更多
基金China-Korea Cooperation Project on the development of oceanic monitoring and prediction system on nuclear safetythe Project of the National Programme on Global Change and Air-sea Interaction under contract No.GASI-03-IPOVAI-05
文摘An operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas(OCFS-C) is developed based on parallelized circulation and wave models. It has been in operation since November 1, 2007. In this paper we comprehensively present the simulation and verification of the system, whose distinguishing feature is that the wave-induced mixing is coupled in the circulation model. In particular, with nested technique the resolution in the China's seas has been updated to(1/24)° from the global model with(1/2)°resolution. Besides, daily remote sensing sea surface temperature(SST) data have been assimilated into the model to generate a hot restart field for OCFS-C. Moreover, inter-comparisons between forecasting and independent observational data are performed to evaluate the effectiveness of OCFS-C in upper-ocean quantities predictions, including SST, mixed layer depth(MLD) and subsurface temperature. Except in conventional statistical metrics, non-dimensional skill scores(SS) is also used to evaluate forecast skill. Observations from buoys and Argo profiles are used for lead time and real time validations, which give a large SS value(more than 0.90). Besides, prediction skill for the seasonal variation of SST is confirmed. Comparisons of subsurface temperatures with Argo profiles data indicate that OCFS-C has low skill in predicting subsurface temperatures between 100 m and 150 m. Nevertheless, inter-comparisons of MLD reveal that the MLD from model is shallower than that from Argo profiles by about 12 m, i.e., OCFS-C is successful and steady in MLD predictions. Validation of 1-d, 2-d and 3-d forecasting SST shows that our operational ocean circulation-surface wave coupled forecasting model has reasonable accuracy in the upper ocean.
文摘Surface miner, a continuous mining machine, is being manufactured in India and abroad owing to enhanced demand of production in various mining industries like coal, limestone, gypsum, bauxite etc. Different types of surface miners are manufactured today based on cutting drum placement and design specifications. Selective mining without drilling and blasting, high production and small size products are some of the prominent attractive features obtained with these moving marvels. This machine can be used with good efficiency in soft to medium hard rock (100-120 MPa). This paper synthesizes the different applications, equipment models, features offered, operating methods, cutting performance assessment models as well as typical production performance of surface miner in coal and limestone mines of India. Engine hour metre reading, diesel and pick consumptions are linearly influenced by production. The emphasis for future research is also brought out.
基金China Ocean Mineral Resources Research and Development Association Project under contract No.DY125-12-R-03the National Natural Science Foundation of China under contract Nos 41476021 and 41321004the Scientific Research Fund of Second Institute of Oceanography,State Oceanic Administration China under contract No.JT1205
文摘A summer-time shipboard meteorological survey is described in the Northwest Indian Ocean. Shipboard observations are used to evaluate a satellite-based sea surface temperature(SST), and then find the main factors that are highly correlated with errors. Two satellite data, the first is remote sensing product of a microwave, which is a Tropical Rainfall Measuring Mission Microwave Imager(TMI), and the second is merged data from the microwave and infrared satellite as well as drifter observations, which is Operational Sea Surface Temperature and Sea Ice Analysis(OSTIA). The results reveal that the daily mean SST of merged data has much lower bias and root mean square error as compared with that from microwave products. Therefore the results support the necessary of the merging infrared and drifter SST with a microwave satellite for improving the quality of the SST. Furthermore, the correlation coefficient between an SST error and meteorological parameters, which include a wind speed, an air temperature, a relative humidity, an air pressure, and a visibility. The results show that the wind speed has the largest correlation coefficient with the TMI SST error. However, the air temperature is the most important factor to the OSTIA SST error. Meanwhile,the relative humidity shows the high correlation with the SST error for the OSTIA product.
文摘Development of man-packable,versatile marine surface vehicle with ability to rescue a drowning victim and also capable of carrying mission specific sensor is explored.Design thinking methodology is implemented by using existing equipment/platform with the addition of external attachment to make it a functional product.Iterative prototyping process with extensive testing to achieve user-centric solution.Individual prototypes and their possible sub-configurations with their integration and characteristics are studied and compared with numerical model,inferences obtained are utilised to improve for the next iteration.A novel hinge-clamp assembly enables this marine surface vehicle to operate in the event of an overturn,this phenomenon is further studied with the aid of a mathematical model(Pendulum in a fluid).This research project aims to demonstrate a multi-role unmanned surface vehicle.
基金support provided by the National Alzheimer's Coordinating Center(NACC)supported by National University of Singapore Academic Research Funding(Grant No.R-155-000-109-112)+2 种基金a CBRG grant from the National Medical Research Council in Singapore,NACC(Grant No.U01AG16976)the National Institute of Health(Grant No.R01EB005829)National Natural Science Foundation of China(Grant No.30728019)
文摘We consider the estimation of three-dimensional ROC surfaces for continuous tests given covariates.Three way ROC analysis is important in our motivating example where patients with Alzheimer's disease are usually classified into three categories and should receive different category-specific medical treatment.There has been no discussion on how covariates affect the three way ROC analysis.We propose a regression framework induced from the relationship between test results and covariates.We consider several practical cases and the corresponding inference procedures.Simulations are conducted to validate our methodology.The application on the motivating example illustrates clearly the age and sex effects on the accuracy for Mini-Mental State Examination of Alzheimer's disease.
基金supported by the National Natural Science Foundation of China(Grant Nos.62225305,12072088,62003117,and 62003118)the National Defense Basic Scientific Research Program of China(Grant No.JCKY2020603B010)+1 种基金the Lab of Space Optoelectronic Measurement&Perception(Grant No.LabSOMP-2021-06)the Natural Science Foundation of Heilongjiang Province,China(Grant No.ZD2020F001)。
文摘This paper is concerned with trajectory planning problems for UAVs operating near ground.Most existing studies focus on solving the problem of collision-free trajectory planning between pre-defined path points,but ignore the need of navigation method for UAVs working on specific operating surfaces in near-ground space.In this paper,a novel near-ground trajectory planning framework is proposed,where the hybrid voxel-surfel map is developed to model the environment with special attention to the uneven operating surface.To improve the frequency of updates,a probability-based surfel fusion method and a resolution adaptive adjustment method based on the fusion result are proposed in this paper.By using possibility information in the map,a path search method is established to generate the initial trajectory.The trajectory is then further optimized based on map gradient information to generate a final trajectory that tracks the specified operating surface according to the task requirements.Compared with existing methods,the multi-resolution hybrid voxel-surfel map proposed in this paper has advantages in terms of operating efficiency.A series of experiments in simulated and real scenarios validate the effectiveness of the proposed trajectory planning framework.