ZTE Corporation (ZTE) announced that its participation in the 8th Annual Asia-Pacific Billing & Revenue Assurance Conference in Singapore from May 12th till 15th 2008 delivered a keynote on its latest ZSmart opera...ZTE Corporation (ZTE) announced that its participation in the 8th Annual Asia-Pacific Billing & Revenue Assurance Conference in Singapore from May 12th till 15th 2008 delivered a keynote on its latest ZSmart operations and business support solutions and shared the latest BSS/OSS technology with key industry players.展开更多
Reactive transport equations in porous media are critical in various scientific and engineering disciplines,but solving these equations can be computationally expensive when exploring different scenarios,such as varyi...Reactive transport equations in porous media are critical in various scientific and engineering disciplines,but solving these equations can be computationally expensive when exploring different scenarios,such as varying porous structures and initial or boundary conditions.The deep operator network(DeepONet)has emerged as a popular deep learning framework for solving parametric partial differential equations.However,applying the DeepONet to porous media presents significant challenges due to its limited capability to extract representative features from intricate structures.To address this issue,we propose the Porous-DeepONet,a simple yet highly effective extension of the DeepONet framework that leverages convolutional neural networks(CNNs)to learn the solution operators of parametric reactive transport equations in porous media.By incorporating CNNs,we can effectively capture the intricate features of porous media,enabling accurate and efficient learning of the solution operators.We demonstrate the effectiveness of the Porous-DeepONet in accurately and rapidly learning the solution operators of parametric reactive transport equations with various boundary conditions,multiple phases,and multiphysical fields through five examples.This approach offers significant computational savings,potentially reducing the computation time by 50–1000 times compared with the finite-element method.Our work may provide a robust alternative for solving parametric reactive transport equations in porous media,paving the way for exploring complex phenomena in porous media.展开更多
We solve the fermionic master equation for a thermal bath to obtain its explicit Kraus operator solutions via the fermionic state approach. The normalization condition of the Kraus operators is proved. The matrix repr...We solve the fermionic master equation for a thermal bath to obtain its explicit Kraus operator solutions via the fermionic state approach. The normalization condition of the Kraus operators is proved. The matrix representation for these solutions is obtained, which is incongruous with the result in the book completed by Nielsen and Chuang [Quan- tum Computation and Quantum Information, Cambridge University Press, 2000]. As especial cases, we also present the Kraus operator solutions to master equations for describing the amplitude-decay model and the diffusion process at finite temperature.展开更多
The nonlinear interactions between the monochromatic wave have been considered by K. Matsunchi, who also proposed one class of the nonlinear Schrdinger equation system with wave operator. We also obtain the same type ...The nonlinear interactions between the monochromatic wave have been considered by K. Matsunchi, who also proposed one class of the nonlinear Schrdinger equation system with wave operator. We also obtain the same type of equations, which are satisfied by transverse velocity of higher frequency electron, as we study soliton in plasma physics. In this paper, under some condition we study the existence and nonexistence for this equations in the cases possessing different signs in nonlinear term.展开更多
Solving partial differential equations Has not only theoretical significance, but also practical value. In this paper, by the property of conjugate operator, we give a method to construct the general solutions of a sy...Solving partial differential equations Has not only theoretical significance, but also practical value. In this paper, by the property of conjugate operator, we give a method to construct the general solutions of a system of partial differential equations.展开更多
In this paper.variable operator and its product with shifting operator are studied.The product of power series of shifting operator with variable coefficient is defined andits convergence is proved under Mikusinski’s...In this paper.variable operator and its product with shifting operator are studied.The product of power series of shifting operator with variable coefficient is defined andits convergence is proved under Mikusinski’s sequence convergence.After turning ageneral variable coefficient linear difference equation of order n into a set of operatorequations.we can obtain the solutions of the general n-th order variable coefficientlinear difference equation.展开更多
As part of Fairmont’s Hotels & Resorts’new commitment to organic, sustainable and local menus, measures are taken everyday at Fairmont hotels across the globe to also find creative ways to run an environmentally...As part of Fairmont’s Hotels & Resorts’new commitment to organic, sustainable and local menus, measures are taken everyday at Fairmont hotels across the globe to also find creative ways to run an environmentally responsible kitchen. Going beyond simply purchasing sustainable food items,these efforts include recycling,reusing and donating,all resulting in an overall impact that lessens the luxury brand’s footprint on the planet.展开更多
This paper is concerned with the periodic retarded functional differential equati-ons(RFDEs) with infinite delay. The sufficient conditions for the existence of noncon-stant positive periodic solutions are established...This paper is concerned with the periodic retarded functional differential equati-ons(RFDEs) with infinite delay. The sufficient conditions for the existence of noncon-stant positive periodic solutions are established by combining the theory of monotone semiflows generated by RFDEs with infinite delay and the fixed point theorems of solution operators. A nontrivial application of the results obtained here to a well-known nonautonomous Lotka-Volterra system with infinite delay is also presented.展开更多
In this paper,the authors propose Neumann series neural operator(NSNO)to learn the solution operator of Helmholtz equation from inhomogeneity coefficients and source terms to solutions.Helmholtz equation is a crucial ...In this paper,the authors propose Neumann series neural operator(NSNO)to learn the solution operator of Helmholtz equation from inhomogeneity coefficients and source terms to solutions.Helmholtz equation is a crucial partial differential equation(PDE)with applications in various scientific and engineering fields.However,efficient solver of Helmholtz equation is still a big challenge especially in the case of high wavenumber.Recently,deep learning has shown great potential in solving PDEs especially in learning solution operators.Inspired by Neumann series in Helmholtz equation,the authors design a novel network architecture in which U-Net is embedded inside to capture the multiscale feature.Extensive experiments show that the proposed NSNO significantly outperforms the state-of-the-art FNO with at least 60%lower relative L^(2)-error,especially in the large wavenumber case,and has 50%lower computational cost and less data requirement.Moreover,NSNO can be used as the surrogate model in inverse scattering problems.Numerical tests show that NSNO is able to give comparable results with traditional finite difference forward solver while the computational cost is reduced tremendously.展开更多
By using a general symmetry theory related to invariant functions,strong symmetry operators and hereditary operators,we find a general integrable hopf heirarchy with infinitely many general symmetries and Lax pairs.Fo...By using a general symmetry theory related to invariant functions,strong symmetry operators and hereditary operators,we find a general integrable hopf heirarchy with infinitely many general symmetries and Lax pairs.For the first order Hopf equation,there exist infinitely many symmetries which can be expressed by means of an arbitrary function in arbitrary dimensions.The general solution of the first order Hopf equation is obtained via hodograph transformation.For the second order Hopf equation,the Hopf-diffusion equation,there are five sets of infinitely many symmetries.Especially,there exist a set of primary branch symmetry with which contains an arbitrary solution of the usual linear diffusion equation.Some special implicit exact group invariant solutions of the Hopf-diffusion equation are also given.展开更多
文摘ZTE Corporation (ZTE) announced that its participation in the 8th Annual Asia-Pacific Billing & Revenue Assurance Conference in Singapore from May 12th till 15th 2008 delivered a keynote on its latest ZSmart operations and business support solutions and shared the latest BSS/OSS technology with key industry players.
基金supported by the National Key Research and Development Program of China(2022YFA1503501)the National Natural Science Foundation of China(22378112,22278127,and 22078088)+1 种基金the Fundamental Research Funds for the Central Universities(2022ZFJH004)the Shanghai Rising-Star Program(21QA1401900).
文摘Reactive transport equations in porous media are critical in various scientific and engineering disciplines,but solving these equations can be computationally expensive when exploring different scenarios,such as varying porous structures and initial or boundary conditions.The deep operator network(DeepONet)has emerged as a popular deep learning framework for solving parametric partial differential equations.However,applying the DeepONet to porous media presents significant challenges due to its limited capability to extract representative features from intricate structures.To address this issue,we propose the Porous-DeepONet,a simple yet highly effective extension of the DeepONet framework that leverages convolutional neural networks(CNNs)to learn the solution operators of parametric reactive transport equations in porous media.By incorporating CNNs,we can effectively capture the intricate features of porous media,enabling accurate and efficient learning of the solution operators.We demonstrate the effectiveness of the Porous-DeepONet in accurately and rapidly learning the solution operators of parametric reactive transport equations with various boundary conditions,multiple phases,and multiphysical fields through five examples.This approach offers significant computational savings,potentially reducing the computation time by 50–1000 times compared with the finite-element method.Our work may provide a robust alternative for solving parametric reactive transport equations in porous media,paving the way for exploring complex phenomena in porous media.
基金supported by the National Natural Science Foundation of China(Grant No.11347026)the Natural Science Foundation of Shandong Province+1 种基金China(Grant Nos.ZR2013AM012 and ZR2012AM004)the Research Fund for the Doctoral Program and Scientific Research Project of Liaocheng University,Shandong Province,China
文摘We solve the fermionic master equation for a thermal bath to obtain its explicit Kraus operator solutions via the fermionic state approach. The normalization condition of the Kraus operators is proved. The matrix representation for these solutions is obtained, which is incongruous with the result in the book completed by Nielsen and Chuang [Quan- tum Computation and Quantum Information, Cambridge University Press, 2000]. As especial cases, we also present the Kraus operator solutions to master equations for describing the amplitude-decay model and the diffusion process at finite temperature.
文摘The nonlinear interactions between the monochromatic wave have been considered by K. Matsunchi, who also proposed one class of the nonlinear Schrdinger equation system with wave operator. We also obtain the same type of equations, which are satisfied by transverse velocity of higher frequency electron, as we study soliton in plasma physics. In this paper, under some condition we study the existence and nonexistence for this equations in the cases possessing different signs in nonlinear term.
文摘Solving partial differential equations Has not only theoretical significance, but also practical value. In this paper, by the property of conjugate operator, we give a method to construct the general solutions of a system of partial differential equations.
文摘In this paper.variable operator and its product with shifting operator are studied.The product of power series of shifting operator with variable coefficient is defined andits convergence is proved under Mikusinski’s sequence convergence.After turning ageneral variable coefficient linear difference equation of order n into a set of operatorequations.we can obtain the solutions of the general n-th order variable coefficientlinear difference equation.
文摘As part of Fairmont’s Hotels & Resorts’new commitment to organic, sustainable and local menus, measures are taken everyday at Fairmont hotels across the globe to also find creative ways to run an environmentally responsible kitchen. Going beyond simply purchasing sustainable food items,these efforts include recycling,reusing and donating,all resulting in an overall impact that lessens the luxury brand’s footprint on the planet.
基金Project supported by NNSF of China (No:19971026).
文摘This paper is concerned with the periodic retarded functional differential equati-ons(RFDEs) with infinite delay. The sufficient conditions for the existence of noncon-stant positive periodic solutions are established by combining the theory of monotone semiflows generated by RFDEs with infinite delay and the fixed point theorems of solution operators. A nontrivial application of the results obtained here to a well-known nonautonomous Lotka-Volterra system with infinite delay is also presented.
基金supported by the National Science Foundation of China under Grant No.92370125the National Key R&D Program of China under Grant Nos.2019YFA0709600 and 2019YFA0709602.
文摘In this paper,the authors propose Neumann series neural operator(NSNO)to learn the solution operator of Helmholtz equation from inhomogeneity coefficients and source terms to solutions.Helmholtz equation is a crucial partial differential equation(PDE)with applications in various scientific and engineering fields.However,efficient solver of Helmholtz equation is still a big challenge especially in the case of high wavenumber.Recently,deep learning has shown great potential in solving PDEs especially in learning solution operators.Inspired by Neumann series in Helmholtz equation,the authors design a novel network architecture in which U-Net is embedded inside to capture the multiscale feature.Extensive experiments show that the proposed NSNO significantly outperforms the state-of-the-art FNO with at least 60%lower relative L^(2)-error,especially in the large wavenumber case,and has 50%lower computational cost and less data requirement.Moreover,NSNO can be used as the surrogate model in inverse scattering problems.Numerical tests show that NSNO is able to give comparable results with traditional finite difference forward solver while the computational cost is reduced tremendously.
基金Supported by the National Natural Science Foundation of China Grant under Nos.11435005,11175092,and 11205092Shanghai Knowledge Service Platform for Trustworthy Internet of Things under Grant No.ZF1213K.C.Wong Magna Fund in Ningbo University
文摘By using a general symmetry theory related to invariant functions,strong symmetry operators and hereditary operators,we find a general integrable hopf heirarchy with infinitely many general symmetries and Lax pairs.For the first order Hopf equation,there exist infinitely many symmetries which can be expressed by means of an arbitrary function in arbitrary dimensions.The general solution of the first order Hopf equation is obtained via hodograph transformation.For the second order Hopf equation,the Hopf-diffusion equation,there are five sets of infinitely many symmetries.Especially,there exist a set of primary branch symmetry with which contains an arbitrary solution of the usual linear diffusion equation.Some special implicit exact group invariant solutions of the Hopf-diffusion equation are also given.