Operational transfer path analysis(OTPA)is an advanced vibration and noise transfer path identification and contribution evaluation method.However,the application of OTPA to rail transit vehicles considers only the ex...Operational transfer path analysis(OTPA)is an advanced vibration and noise transfer path identification and contribution evaluation method.However,the application of OTPA to rail transit vehicles considers only the excitation amplitude and ignores the influence of the excitation phase.This study considers the influence of the excitation amplitude and phase,and analyzes the contribution of the secondary suspension path to the floor vibration when the metro vehicle runs at 60 km/h,using an analysis based on the OTPA method.The results show that the vertical direction of the anti-rolling torsion bar area provides the maximum contribution to the floor vibration,with a contribution of 22.1%,followed by the longitudinal vibration of the air spring area,with a contribution of 17.1%.Based on the contribution analysis,a transfer path optimization scheme is proposed,which may provide a reference for the optimization of the transfer path of metro vehicles in the future.展开更多
Passengers’demands for riding comfort have been getting higher and higher as the high-speed railway develops.Scientific methods to analyze the interior noise of the high-speed train are needed and the operational tra...Passengers’demands for riding comfort have been getting higher and higher as the high-speed railway develops.Scientific methods to analyze the interior noise of the high-speed train are needed and the operational transfer path analysis(OTPA)method provides a theoretical basis and guidance for the noise control of the train and overcomes the shortcomings of the traditional method,which has high test efficiency and can be carried out during the working state of the targeted machine.The OTPA model is established from the aspects of“path reference point-target point”and“sound source reference point-target point”.As for the mechanism of the noise transmission path,an assumption is made that the direct sound propagation is ignored,and the symmetric sound source and the symmetric path are merged.Using the operational test data and the OTPA method,combined with the results of spherical array sound source identification,the path contribution and sound source contribution of the interior noise are analyzed,respectively,from aspects of the total value and spectrum.The results show that the OTPA conforms to the calculation results of the spherical array sound source identification.At low speed,the contribution of the floor path and the contribution of the bogie sources are dominant.When the speed is greater than 300 km/h,the contribution of the roof path is dominant.Moreover,for the carriage with a pantograph,the lifted pantograph is an obvious source.The noise from the exterior sources of the train transfer into the interior mainly through the form of structural excitation,and the contribution of air excitation is non-significant.Certain analyses of train parts provide guides for the interior noise control.展开更多
阐明了工况传递路径分析方法(Operational Transfer Path Analysis,OTPA)的基本原理和分析流程;基于单路径隔振系统进行传递函数计算和精度分析;利用OTPA方法对3路径隔振系统的每条路径进行振动传递能力分析,并利用路径的振动传递贡献...阐明了工况传递路径分析方法(Operational Transfer Path Analysis,OTPA)的基本原理和分析流程;基于单路径隔振系统进行传递函数计算和精度分析;利用OTPA方法对3路径隔振系统的每条路径进行振动传递能力分析,并利用路径的振动传递贡献量确定出振动传递的关键路径。分析方法和流程能为机械系统振动或噪声源定位、传递机理分析、振动或噪声控制提供研究基础。展开更多
针对工况传递路径分析(Operational transfer Path Analysis OPA)方法在工程应用中虽具吸引力、尚存准确性难以满足船舶实际应用需求等问题,将多源信号视为卷积混叠,提出耦合振动噪声源分离方法。建立船舶OPA模型,结合船舶传递路径振声...针对工况传递路径分析(Operational transfer Path Analysis OPA)方法在工程应用中虽具吸引力、尚存准确性难以满足船舶实际应用需求等问题,将多源信号视为卷积混叠,提出耦合振动噪声源分离方法。建立船舶OPA模型,结合船舶传递路径振声测试试验对模型可行性、正确性进行验证。讨论观测点数目及不同工况组合对新OPA模型影响,给出有效选取原则。结果表明,新OPA模型可准确、高效进行船舶噪声源识别、声场预报及状态监测,工程应用前景广阔。展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.U1934203,U1734201)Sichuan Science and Technology Program(Grant No.2020YJ0254)Fundamental Research Funds for the State Key Laboratory of Traction Power(Grant No.2019-Q02).
文摘Operational transfer path analysis(OTPA)is an advanced vibration and noise transfer path identification and contribution evaluation method.However,the application of OTPA to rail transit vehicles considers only the excitation amplitude and ignores the influence of the excitation phase.This study considers the influence of the excitation amplitude and phase,and analyzes the contribution of the secondary suspension path to the floor vibration when the metro vehicle runs at 60 km/h,using an analysis based on the OTPA method.The results show that the vertical direction of the anti-rolling torsion bar area provides the maximum contribution to the floor vibration,with a contribution of 22.1%,followed by the longitudinal vibration of the air spring area,with a contribution of 17.1%.Based on the contribution analysis,a transfer path optimization scheme is proposed,which may provide a reference for the optimization of the transfer path of metro vehicles in the future.
文摘Passengers’demands for riding comfort have been getting higher and higher as the high-speed railway develops.Scientific methods to analyze the interior noise of the high-speed train are needed and the operational transfer path analysis(OTPA)method provides a theoretical basis and guidance for the noise control of the train and overcomes the shortcomings of the traditional method,which has high test efficiency and can be carried out during the working state of the targeted machine.The OTPA model is established from the aspects of“path reference point-target point”and“sound source reference point-target point”.As for the mechanism of the noise transmission path,an assumption is made that the direct sound propagation is ignored,and the symmetric sound source and the symmetric path are merged.Using the operational test data and the OTPA method,combined with the results of spherical array sound source identification,the path contribution and sound source contribution of the interior noise are analyzed,respectively,from aspects of the total value and spectrum.The results show that the OTPA conforms to the calculation results of the spherical array sound source identification.At low speed,the contribution of the floor path and the contribution of the bogie sources are dominant.When the speed is greater than 300 km/h,the contribution of the roof path is dominant.Moreover,for the carriage with a pantograph,the lifted pantograph is an obvious source.The noise from the exterior sources of the train transfer into the interior mainly through the form of structural excitation,and the contribution of air excitation is non-significant.Certain analyses of train parts provide guides for the interior noise control.
文摘阐明了工况传递路径分析方法(Operational Transfer Path Analysis,OTPA)的基本原理和分析流程;基于单路径隔振系统进行传递函数计算和精度分析;利用OTPA方法对3路径隔振系统的每条路径进行振动传递能力分析,并利用路径的振动传递贡献量确定出振动传递的关键路径。分析方法和流程能为机械系统振动或噪声源定位、传递机理分析、振动或噪声控制提供研究基础。
文摘针对工况传递路径分析(Operational transfer Path Analysis OPA)方法在工程应用中虽具吸引力、尚存准确性难以满足船舶实际应用需求等问题,将多源信号视为卷积混叠,提出耦合振动噪声源分离方法。建立船舶OPA模型,结合船舶传递路径振声测试试验对模型可行性、正确性进行验证。讨论观测点数目及不同工况组合对新OPA模型影响,给出有效选取原则。结果表明,新OPA模型可准确、高效进行船舶噪声源识别、声场预报及状态监测,工程应用前景广阔。