Fentanyl is a potent and widely used clinical narcotic analgesic, as well as a highly selective IJ-opioid agonist. The present study established a homologous model of the human μ-opioid receptor; an intercomparison o...Fentanyl is a potent and widely used clinical narcotic analgesic, as well as a highly selective IJ-opioid agonist. The present study established a homologous model of the human μ-opioid receptor; an intercomparison of three types of μ-opioid receptor protein sequence homologous rates was made. The secondary receptor structure was predicted, the model reliability was assessed and verified using the Ramachandran plot and ProTab analysis. The predictive ability of the CoMFA model was further validated using an external test set. Using the Surflex-Dock program, a series of fentanyl analog molecules were docked to the receptor, the calculation results from Biopolymer/SitelD showed that the receptor had a deep binding area situated in the extracellular side of the transmembrane domains (TM) among TM3, TM5, TM6, and TMT. Results suggested that there might be 5 active areas in the receptor. The important residues were Asp147, Tyr148, and Tyr149 in TM3, Trp293, and His297 in TM6, and Trp318, His319, Ile322, and Tyr326 in TM7, which were located at the 5 active areas. The best fentanyl docking orientation position was the piperidine ring, which was nearly perpendicular to the membrane surface in the 7 TM domains. Molecular dynamic simulations were applied to evaluate potential relationships between ligand conformation and fentanyl substitution.展开更多
Ischemic stroke is a global epidemic condition due to an inadequate supply of blood and oxygen to a specific area of brain either by arterial blockage or by narrowing of blood vessels.Despite having advancement in the...Ischemic stroke is a global epidemic condition due to an inadequate supply of blood and oxygen to a specific area of brain either by arterial blockage or by narrowing of blood vessels.Despite having advancement in the use of thrombolytic and clot removal medicine,significant numbers of stroke patients are still left out without option for treatment.In this review,we summarize recent research work on the activation ofδ-opioid receptor as a strategy for treating ischemic stroke-caused neuronal injury.Moreover,as activation ofδ-opioid receptor by a non-peptidicδ-opioid receptor agonist also modulates the expression,maturation and processing of amyloid precursor protein andβ-secretase activity,the potential role of these effects on ischemic stroke caused dementia or Alzheimer’s disease are also discussed.展开更多
Lucemyra? (lofexidine hydrochloride) has recently been approved by the US FDA for the mitigation of withdrawal symptoms to facilitate abrupt discontinuation of opioids in adults. Lofexidine is an alpha-2 adrenoceptor ...Lucemyra? (lofexidine hydrochloride) has recently been approved by the US FDA for the mitigation of withdrawal symptoms to facilitate abrupt discontinuation of opioids in adults. Lofexidine is an alpha-2 adrenoceptor agonist. However, the clinical attributes of lofexidine differ in advantageous ways from the classical alpha-2 adrenoceptor agonist clonidine. In the present study, we measured the receptor binding profile of lofexidine and clonidine in an effort to gain an insight into the clinical difference(s).展开更多
The study was undertaken in order to evaluate effect of synthetic insect neuropeptide leucopyrokinin analog, [D-Ala5]-[2-8]-LPK, on analgesia induced by selective agonists of/a-, 6- and l〈-opioid receptors. The study...The study was undertaken in order to evaluate effect of synthetic insect neuropeptide leucopyrokinin analog, [D-Ala5]-[2-8]-LPK, on analgesia induced by selective agonists of/a-, 6- and l〈-opioid receptors. The study was performed on male Wistar rats, which a week before the experiments were implanted with polyethylene cannulas into the lateral brain ventricle (icv). Effect of prior administration of [D-Ala5]-[2-8]-LPK on analgesia induced in rats by next icv administration of equimolar dose of μ-, δ- and -opioid agonists: DAMGO, DPDPE and GR fumarate respectively, was evaluated. Antinociceptive effect was determined in rats by the test of the tail immersion. It was found that two doses of 5 and 10 nmols icv of [D-AlaS]-[2-8]-LPK inhibited analgesia in rats by equimolar doses of DAMGO. This analog also transiently (only in two time intervals) and in one dose of 10 nmols inhibited analgesia induced in rats by icv administration of equimolar DPDPE dose of 10 nmols icv. Obtained results indicate that [D-AlaS]-[2-8]-LPK inhibits antinociceptive effect of DAMGO and in part of DPDPE, i.e. mainly antagonized ~t-opioid receptors. These results correspond with results of our previous study that selective antagonists of μ- and δ-opioid receptors blocked antinociceptive effect of synthetic insect neuropeptide leucopyrokinin and of it active analog [2-8]-leucopyrokinin. We regard that [D-AIaS]-[2-8]-LPK, the first discovered antagonist of leucopyrokinin may be a useful as a probable tool substance in the study of biological effects of insect-derived peptides either in invertebrates or in mammals.展开更多
基金supported by the National Natural Science Foundation of China(Molecular design,catalysis and synthesis methods of novel fentanyl analogs active compounds)No.20872095
文摘Fentanyl is a potent and widely used clinical narcotic analgesic, as well as a highly selective IJ-opioid agonist. The present study established a homologous model of the human μ-opioid receptor; an intercomparison of three types of μ-opioid receptor protein sequence homologous rates was made. The secondary receptor structure was predicted, the model reliability was assessed and verified using the Ramachandran plot and ProTab analysis. The predictive ability of the CoMFA model was further validated using an external test set. Using the Surflex-Dock program, a series of fentanyl analog molecules were docked to the receptor, the calculation results from Biopolymer/SitelD showed that the receptor had a deep binding area situated in the extracellular side of the transmembrane domains (TM) among TM3, TM5, TM6, and TMT. Results suggested that there might be 5 active areas in the receptor. The important residues were Asp147, Tyr148, and Tyr149 in TM3, Trp293, and His297 in TM6, and Trp318, His319, Ile322, and Tyr326 in TM7, which were located at the 5 active areas. The best fentanyl docking orientation position was the piperidine ring, which was nearly perpendicular to the membrane surface in the 7 TM domains. Molecular dynamic simulations were applied to evaluate potential relationships between ligand conformation and fentanyl substitution.
基金supported by the National Institute of Neurological Disorders and Stroke under research grant NS088084(to HW)
文摘Ischemic stroke is a global epidemic condition due to an inadequate supply of blood and oxygen to a specific area of brain either by arterial blockage or by narrowing of blood vessels.Despite having advancement in the use of thrombolytic and clot removal medicine,significant numbers of stroke patients are still left out without option for treatment.In this review,we summarize recent research work on the activation ofδ-opioid receptor as a strategy for treating ischemic stroke-caused neuronal injury.Moreover,as activation ofδ-opioid receptor by a non-peptidicδ-opioid receptor agonist also modulates the expression,maturation and processing of amyloid precursor protein andβ-secretase activity,the potential role of these effects on ischemic stroke caused dementia or Alzheimer’s disease are also discussed.
文摘Lucemyra? (lofexidine hydrochloride) has recently been approved by the US FDA for the mitigation of withdrawal symptoms to facilitate abrupt discontinuation of opioids in adults. Lofexidine is an alpha-2 adrenoceptor agonist. However, the clinical attributes of lofexidine differ in advantageous ways from the classical alpha-2 adrenoceptor agonist clonidine. In the present study, we measured the receptor binding profile of lofexidine and clonidine in an effort to gain an insight into the clinical difference(s).
文摘The study was undertaken in order to evaluate effect of synthetic insect neuropeptide leucopyrokinin analog, [D-Ala5]-[2-8]-LPK, on analgesia induced by selective agonists of/a-, 6- and l〈-opioid receptors. The study was performed on male Wistar rats, which a week before the experiments were implanted with polyethylene cannulas into the lateral brain ventricle (icv). Effect of prior administration of [D-Ala5]-[2-8]-LPK on analgesia induced in rats by next icv administration of equimolar dose of μ-, δ- and -opioid agonists: DAMGO, DPDPE and GR fumarate respectively, was evaluated. Antinociceptive effect was determined in rats by the test of the tail immersion. It was found that two doses of 5 and 10 nmols icv of [D-AlaS]-[2-8]-LPK inhibited analgesia in rats by equimolar doses of DAMGO. This analog also transiently (only in two time intervals) and in one dose of 10 nmols inhibited analgesia induced in rats by icv administration of equimolar DPDPE dose of 10 nmols icv. Obtained results indicate that [D-AlaS]-[2-8]-LPK inhibits antinociceptive effect of DAMGO and in part of DPDPE, i.e. mainly antagonized ~t-opioid receptors. These results correspond with results of our previous study that selective antagonists of μ- and δ-opioid receptors blocked antinociceptive effect of synthetic insect neuropeptide leucopyrokinin and of it active analog [2-8]-leucopyrokinin. We regard that [D-AIaS]-[2-8]-LPK, the first discovered antagonist of leucopyrokinin may be a useful as a probable tool substance in the study of biological effects of insect-derived peptides either in invertebrates or in mammals.