完全非负矩阵在Hadamard乘积意义下是不封闭的。对于两个三对角完全非负矩阵A=(a_(ij)),B=(b_(ij)),Markham证明了它们的Hadamard乘积的行列式满足Oppenheim不等式。我们应用完全非负矩阵的Hadamard中心的性质,改进了Markham的相应结果...完全非负矩阵在Hadamard乘积意义下是不封闭的。对于两个三对角完全非负矩阵A=(a_(ij)),B=(b_(ij)),Markham证明了它们的Hadamard乘积的行列式满足Oppenheim不等式。我们应用完全非负矩阵的Hadamard中心的性质,改进了Markham的相应结果,给出了新的下界(A_1为删去第一行的A的主子矩阵):det(AB)≥(multiply from i=1 to n b_(ii))detA+(multiply from i=1 to n a_(ii))detB-detAdetB+(detA)((multiply from i=2 to n a_(ii)/detA_1)-1)(b_(11)detB_1-detB)+(detB)((multiply from i=2 to n b_(ii)/detB_1)-1)(a_(11)detA_1-detA)。展开更多
基金Supported by the Science Foundation of Fujian Educational Department (JA03159) the Science ResearchFoundation of Putian University(2004Q003 2004Q002)
文摘完全非负矩阵在Hadamard乘积意义下是不封闭的。对于两个三对角完全非负矩阵A=(a_(ij)),B=(b_(ij)),Markham证明了它们的Hadamard乘积的行列式满足Oppenheim不等式。我们应用完全非负矩阵的Hadamard中心的性质,改进了Markham的相应结果,给出了新的下界(A_1为删去第一行的A的主子矩阵):det(AB)≥(multiply from i=1 to n b_(ii))detA+(multiply from i=1 to n a_(ii))detB-detAdetB+(detA)((multiply from i=2 to n a_(ii)/detA_1)-1)(b_(11)detB_1-detB)+(detB)((multiply from i=2 to n b_(ii)/detB_1)-1)(a_(11)detA_1-detA)。