Navigation via signals of opportunity(NAVSOP)is able to realize positioning by making use of hundreds of different signals that are all around us.A method to realize NAVSOP for low earth orbit(LEO)satellites is propos...Navigation via signals of opportunity(NAVSOP)is able to realize positioning by making use of hundreds of different signals that are all around us.A method to realize NAVSOP for low earth orbit(LEO)satellites is proposed in this paper,in which the global navigation satellite system(GNSS)authorized signals are utilized as the signal of opportunity(SOP).At first,the carrier recovery technique is studied under the premise that the pseudo-code is unknown.Secondly,a method based on characteristics of Doppler frequency shift is proposed to recognize the navigation satellites.Thirdly,the extended Kalman filter(EKF)is utilized to estimate the orbital parameters by using carrier phase measurements.Finally,the proposed method is evaluated by using signals generated by a satellite navigation data simulator.The simulation results show that the proposed method can successfully realize navigation via GNSS authorized signals.展开更多
Localization of sensor nodes in the internet of underwater things(IoUT)is of considerable significance due to its various applications,such as navigation,data tagging,and detection of underwater objects.Therefore,in t...Localization of sensor nodes in the internet of underwater things(IoUT)is of considerable significance due to its various applications,such as navigation,data tagging,and detection of underwater objects.Therefore,in this paper,we propose a hybrid Bayesian multidimensional scaling(BMDS)based localization technique that can work on a fully hybrid IoUT network where the nodes can communicate using either optical,magnetic induction,and acoustic technologies.These communication technologies are already used for communication in the underwater environment;however,lacking localization solutions.Optical and magnetic induction communication achieves higher data rates for short communication.On the contrary,acoustic waves provide a low data rate for long-range underwater communication.The proposed method collectively uses optical,magnetic induction,and acoustic communication-based ranging to estimate the underwater sensor nodes’final locations.Moreover,we also analyze the proposed scheme by deriving the hybrid Cramer-Rao lower bound(H-CRLB).Simulation results provide a complete comparative analysis of the proposed method with the literature.展开更多
基金This work was supported by the National Natural Science Foundation of China(61673212).
文摘Navigation via signals of opportunity(NAVSOP)is able to realize positioning by making use of hundreds of different signals that are all around us.A method to realize NAVSOP for low earth orbit(LEO)satellites is proposed in this paper,in which the global navigation satellite system(GNSS)authorized signals are utilized as the signal of opportunity(SOP).At first,the carrier recovery technique is studied under the premise that the pseudo-code is unknown.Secondly,a method based on characteristics of Doppler frequency shift is proposed to recognize the navigation satellites.Thirdly,the extended Kalman filter(EKF)is utilized to estimate the orbital parameters by using carrier phase measurements.Finally,the proposed method is evaluated by using signals generated by a satellite navigation data simulator.The simulation results show that the proposed method can successfully realize navigation via GNSS authorized signals.
文摘Localization of sensor nodes in the internet of underwater things(IoUT)is of considerable significance due to its various applications,such as navigation,data tagging,and detection of underwater objects.Therefore,in this paper,we propose a hybrid Bayesian multidimensional scaling(BMDS)based localization technique that can work on a fully hybrid IoUT network where the nodes can communicate using either optical,magnetic induction,and acoustic technologies.These communication technologies are already used for communication in the underwater environment;however,lacking localization solutions.Optical and magnetic induction communication achieves higher data rates for short communication.On the contrary,acoustic waves provide a low data rate for long-range underwater communication.The proposed method collectively uses optical,magnetic induction,and acoustic communication-based ranging to estimate the underwater sensor nodes’final locations.Moreover,we also analyze the proposed scheme by deriving the hybrid Cramer-Rao lower bound(H-CRLB).Simulation results provide a complete comparative analysis of the proposed method with the literature.