期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
基于融合中间特征网络的视盘和视杯联合分割
1
作者 刘哲夏 李峰 江旻珊 《控制工程》 CSCD 北大核心 2024年第7期1272-1279,共8页
针对视盘和视杯联合分割中视杯分割精度较差的问题,提出了一种融合编码与解码中间特征的U型网络(encode-decode middle feature fusion U-Net,EMFF-Net)。EMFF-Net使用预训练的ResNet34作为编码结构,在编码结构后加入密集空洞卷积和金... 针对视盘和视杯联合分割中视杯分割精度较差的问题,提出了一种融合编码与解码中间特征的U型网络(encode-decode middle feature fusion U-Net,EMFF-Net)。EMFF-Net使用预训练的ResNet34作为编码结构,在编码结构后加入密集空洞卷积和金字塔池化模块以产生复合感受域的特征,并使用交叉注意力连接替换U型网络结构中的跳跃连接。交叉注意力连接融合了编码特征与解码特征,通过通道注意力模块和空间注意力模块提取融合特征的信息用于强化解码特征,减小了解码特征与编码特征的语义沟壑。强化后的解码特征与编码特征再次融合后,通过解码结构输出视盘和视杯的联合分割结果。实验结果表明,与其他常用的分割方法相比,EMFF-Net的视盘和视杯联合分割效果较好,视杯分割性能有明显提升。 展开更多
关键词 视盘视杯分割 特征融合 EMFF-Net 深度学习 交叉注意力连接
下载PDF
基于ReSE-AG-Net的青光眼视盘视杯分割方法
2
作者 李豪杰 郭子洋 +2 位作者 刘伟志 罗益 曹秒 《长春理工大学学报(自然科学版)》 2024年第4期115-121,共7页
分割视盘视杯是诊断青光眼的主要依据,因此提出了一种基于改进U-Net网络的青光眼视盘视杯分割方法,称为ReSE-AG-Net。并将ReSE-AG-Net、U-Net、M-Net、CE-Net和CDED-Net分别在Drishti-GS1数据集和RIM-ONE-R3数据集上进行测试,对得到分... 分割视盘视杯是诊断青光眼的主要依据,因此提出了一种基于改进U-Net网络的青光眼视盘视杯分割方法,称为ReSE-AG-Net。并将ReSE-AG-Net、U-Net、M-Net、CE-Net和CDED-Net分别在Drishti-GS1数据集和RIM-ONE-R3数据集上进行测试,对得到分割后的视盘视杯的Dice系数和IoU进行对比。实验结果表明,在Drishti-GS1数据集上,分割视盘的Dice系数和IoU分别是0.989 1和0.959 0,分割视杯的Dice系数和IoU分别是0.931 0和0.871 0,在RIMONE-R3数据集上,分割视盘的Dice系数和IoU分别是0.978 9和0.958 7,分割视杯的Dice系数和IoU分别是0.863 7和0.760 1,对比U-Net模型和现有的分割模型均有一定的提升,证明了该方法的可行性。 展开更多
关键词 青光眼 视盘视杯分割 U-Net ReSE-AG-Net
下载PDF
基于对抗学习和引导机制的视盘和视杯联合分割
3
作者 马晓月 陈媛媛 《计算机工程》 CAS CSCD 北大核心 2024年第12期59-69,共11页
准确的视盘(OD)和视杯(OC)分割能够有效地辅助青光眼的诊断和监测,从而进一步提高治疗效果。然而,现有方法没有考虑到眼底图像不同通道之间的差异,并且难以实现对OC边界的精确分割。针对这个问题,提出一种基于对抗学习和引导机制的网络... 准确的视盘(OD)和视杯(OC)分割能够有效地辅助青光眼的诊断和监测,从而进一步提高治疗效果。然而,现有方法没有考虑到眼底图像不同通道之间的差异,并且难以实现对OC边界的精确分割。针对这个问题,提出一种基于对抗学习和引导机制的网络框架ALG-Net,旨在提高OD和OC的分割性能。ALG-Net由分割网络和鉴别器两部分组成。在分割网络中,构建引导融合模块(GFM),该模块将单通道特征信息与RGB图像特征融合,使网络充分学习眼底图像不同通道之间的差异信息,引导分割网络聚焦于关键区域。ALG-Net网络框架还采用了鉴别器,通过对抗学习的方式促进分割网络生成更真实的分割结果。在REFUGE和Drishti-GS数据集上进行广泛的实验评估,实验结果表明,ALG-Net在RUFUGE数据集上OD和OC分割的平衡精度分别达到了98.6%和95.9%,在Drishti-GS数据集上也表现出优异的性能。此外,ALG-Net的分割结果应用于青光眼分类任务,在RUFUGE数据集上ROC曲线下面积(AUC)为0.983,相较于经典UNet算法提高了0.015,为青光眼的早期诊断和监测提供了有力的支持。 展开更多
关键词 青光眼诊断 视盘分割 视杯分割 UNet模型 注意力机制 引导机制 对抗学习
下载PDF
基于改进U⁃Net的视盘视杯联合分割方法
4
作者 周利涛 王志超 +1 位作者 施璜浩 常珊 《现代计算机》 2024年第3期48-53,60,共7页
青光眼是一种不可逆的致盲性眼疾,疾病早期症状不明显使得许多患者错失治疗的最佳时机。眼底照相作为最常见的青光眼筛查手段,眼底杯盘比值是诊断青光眼的重要指标之一。针对图像中视盘视杯分割精度不高的问题,构建了一种改进U⁃Net的视... 青光眼是一种不可逆的致盲性眼疾,疾病早期症状不明显使得许多患者错失治疗的最佳时机。眼底照相作为最常见的青光眼筛查手段,眼底杯盘比值是诊断青光眼的重要指标之一。针对图像中视盘视杯分割精度不高的问题,构建了一种改进U⁃Net的视盘视杯联合分割模型CASSP⁃Net,引入CBAM注意力机制和空洞空间金字塔结构,进一步提升视盘视杯联合分割的精确度,在Drishti⁃GS和REFUGE数据集中进行测试,在Dice和IoU上分别获得92.03%和85.23%的较好表现。 展开更多
关键词 青光眼 视盘 视杯 眼底图像分割 深度学习
下载PDF
基于神经网络的眼底视杯图象分割技术 被引量:2
5
作者 汪亚明 汪元美 +1 位作者 刘峰 董玉德 《应用基础与工程科学学报》 EI CSCD 1998年第3期106-110,共5页
根据眼底图象中视杯的边沿特征,提出了一种基于BP神经网络的视杯分割方法,详述了这种方法的实现过程,并研究了BP学习算法的加速问题.实验证明,这种方法的分割效果较好.
关键词 眼底图象 视杯 边沿特征 图象分割 BP网络
下载PDF
改进区域生长算法在视杯图像分割中的应用 被引量:6
6
作者 刘振宇 汪淼 《辽宁大学学报(自然科学版)》 CAS 2017年第2期105-113,共9页
目的:视杯图像分割对于通过眼底图像检测青光眼具有重要意义,在传统的区域生长算法基础上进行改进,提出了基于眼底图像的视杯自动检测分割方法.方法:首先,对眼底主要生理结构进行特征分析,为分割目标选取了绿色通道并根据阈值法粗略提... 目的:视杯图像分割对于通过眼底图像检测青光眼具有重要意义,在传统的区域生长算法基础上进行改进,提出了基于眼底图像的视杯自动检测分割方法.方法:首先,对眼底主要生理结构进行特征分析,为分割目标选取了绿色通道并根据阈值法粗略提取出感兴趣区域(ROI);其次,考虑到传统的区域生长算法在选取种子点时不精确、自适应性差等缺点,通过计算ROI的几何中心并结合中心亮度作为选取种子点的标准进行改进;最后,用5*5模板对眼底图像进行均值滤波,应用山谷差值准则和8邻域连通准则对眼底图像进行种子合并,最终准确分割出视杯.结果:应用这种方法,对高分辨率眼底图像(HRF)数据库中15张青光眼眼底图像和15张健康眼眼底图像逐张进行检测,准确率达到93.3%.结论:实验结果表明,该算法能快速、有效地自动检测出眼底图像中的视杯并将其正确的分割出来,与传统算法相比较该算法稳定可靠,有较高的分割灵敏度、特异度以及准确性. 展开更多
关键词 青光眼 视盘 视杯 自动检测 感兴趣区域 种子点 几何中心 区域生长算法 山谷差值准则
下载PDF
基于多特征融合的彩色眼底图像视杯分割方法 被引量:2
7
作者 吴骏 尚丹丹 +2 位作者 肖志涛 耿磊 张芳 《天津工业大学学报》 北大核心 2017年第6期66-72,共7页
为了提高彩色眼底图像中视杯的分割精度,提出了一种基于多特征融合的彩色眼底图像视杯分割方法.首先提取感兴趣区域的血管;然后分割视盘区域,在视盘分割的基础上根据视杯的亮度特征采用模糊C均值聚类(FCM)法提取视杯候选区域,并根据视... 为了提高彩色眼底图像中视杯的分割精度,提出了一种基于多特征融合的彩色眼底图像视杯分割方法.首先提取感兴趣区域的血管;然后分割视盘区域,在视盘分割的基础上根据视杯的亮度特征采用模糊C均值聚类(FCM)法提取视杯候选区域,并根据视杯的形状和位置特征对候选区域依次进行镜像映射、椭圆拟合及椭圆校正,得到视杯的粗分割结果;最后利用杯沿的血管特征定位血管弯曲点,修正视杯粗分割结果,完成视杯的准确分割.对Glaucoma Repo眼底图像数据库进行测试,实验结果表明:该方法的灵敏度为87.15%,特异性为99.03%,准确率为98.12%,阳性预测值为82.03%,综合评价指标为84.51%,像素距离为18.80,具有较高的鲁棒性和有效性. 展开更多
关键词 彩色眼底图像 多特征融合 视杯分割 视盘分割 模糊C均值聚类 椭圆拟合
下载PDF
基于多尺度特征的视盘分割方法 被引量:1
8
作者 燕杨 曹娅迪 黄文博 《吉林大学学报(理学版)》 CAS 北大核心 2023年第1期136-142,共7页
针对视盘、视杯分割任务中,由青光眼病变引起目标大小显著变化导致的错误分割问题,提出一种使用更轻量级的编码器-解码器网络,并引入金字塔池化模块,通过网络丰富的感受野捕捉更多上下文特征,丰富尺度特征,充分利用全局信息.在数据集RIM... 针对视盘、视杯分割任务中,由青光眼病变引起目标大小显著变化导致的错误分割问题,提出一种使用更轻量级的编码器-解码器网络,并引入金字塔池化模块,通过网络丰富的感受野捕捉更多上下文特征,丰富尺度特征,充分利用全局信息.在数据集RIM-ONE v.3上进行多组对比实验和评估,实验结果表明,该方法对视盘分割的平均交并比为0.908, Dice系数为0.958,均方误差为0.002,比现有算法各项指标性能均有提高. 展开更多
关键词 视盘分割 视杯分割 金字塔池化模块 彩色眼底图像
下载PDF
基于C-V模型的眼底图像交互式杯盘分割 被引量:2
9
作者 董银伟 沈建新 王玉亮 《计算机应用与软件》 CSCD 北大核心 2012年第5期104-108,共5页
针对眼底图像视杯和视盘水平集分割中C-V模型自适应能力不强等问题,提出一种基于C-V模型的视盘和视杯交互式水平集分割算法。该方法通过交互方式给定不同的视盘初始轮廓和C-V模型参数,对眼底图像的杯盘进行精确地分割。实验结果表明,该... 针对眼底图像视杯和视盘水平集分割中C-V模型自适应能力不强等问题,提出一种基于C-V模型的视盘和视杯交互式水平集分割算法。该方法通过交互方式给定不同的视盘初始轮廓和C-V模型参数,对眼底图像的杯盘进行精确地分割。实验结果表明,该方法可克服噪声污染、光照不均匀、对比度低等特点对眼底图像分割的影响,对彩色眼底图像中的视杯和视盘进行精确分割。 展开更多
关键词 眼底图像 图像分割 C-V模型 交互式 杯盘分割
下载PDF
融合感受野模块的卷积神经网络视杯视盘联合分割 被引量:4
10
作者 于舒扬 袁鑫 郑秀娟 《中国生物医学工程学报》 CAS CSCD 北大核心 2022年第2期167-176,共10页
青光眼是世界第一大不可逆致盲性眼病,早期诊断和及时治疗是预防青光眼致盲的有效措施。眼底图像中的杯盘比是青光眼早期筛查与临床诊断的重要指标。因此,精确的视杯视盘分割是准确计算杯盘比并提高青光眼计算机辅助诊断技术的关键。针... 青光眼是世界第一大不可逆致盲性眼病,早期诊断和及时治疗是预防青光眼致盲的有效措施。眼底图像中的杯盘比是青光眼早期筛查与临床诊断的重要指标。因此,精确的视杯视盘分割是准确计算杯盘比并提高青光眼计算机辅助诊断技术的关键。针对这一问题,在对眼底图像进行极坐标变换的基础上,提出一种融合感受野模块的卷积神经网络Seg-RFNet,以实现视杯视盘联合分割。Seg-RFNet以SegNet框架为基础,使用ResNet50作为编码层,增强图像的特征提取能力,并对编码层进行分支处理,进一步获得更多的深层语义信息;同时在编码层和解码层之间加入感受野模块,模拟人类视觉系统,在增大感受野的同时增强了有用特征的响应。使用MICCAI 2018公开数据集REFUGE中的800张眼底图像对所提出方法与其他方法进行性能验证和比较。结果表明,Seg-RFNet分割视杯和视盘的Jaccard相似度分别0.951 5和0.872 0,F分数达到了0.974 9和0.930 1,与常用的U-Net、SegNet网络相比,Seg-RFNet具有更好的视杯视盘联合分割精度,为计算杯盘比提供了精确分割基础。 展开更多
关键词 卷积神经网络 眼底图像 视杯分割 视盘分割 青光眼筛查
下载PDF
融合金字塔切分注意力模块的视杯视盘分割 被引量:1
11
作者 刘熠翕 江旻珊 张学典 《上海理工大学学报》 CAS CSCD 北大核心 2022年第6期532-539,545,共9页
视杯和视盘的垂直直径比是青光眼在临床诊断中的重要指标,为了更加准确地测量杯盘比,针对视网膜眼底图像中的视盘和视杯分割精度的问题,提出了一个改进后的端到端的U型卷积神经网络框架,采用Resnet 34作为新的编码部分,并在每一个编码... 视杯和视盘的垂直直径比是青光眼在临床诊断中的重要指标,为了更加准确地测量杯盘比,针对视网膜眼底图像中的视盘和视杯分割精度的问题,提出了一个改进后的端到端的U型卷积神经网络框架,采用Resnet 34作为新的编码部分,并在每一个编码层的末端引入金字塔切分注意力PSA模块以提取更多的有效特征信息。同时使用1×1卷积代替3×3卷积来简化解码结构,并且使用一个3×3卷积与一个通过跳跃连接的1×1卷积结构取代跳跃连接。该网络模型在内部数据集上完成训练后,在DRISHTI-GS数据集进行测试,对视盘和视杯的分割结果在Dice和IOU上分别表现为97.61%和95.32%,92.91%和86.75%,证明了该模型具有良好的泛化性。 展开更多
关键词 卷积神经网络 视杯视盘分割 多尺度特征融合 注意力机制
下载PDF
采用双支路和Transformer的视杯视盘分割方法 被引量:1
12
作者 王甜甜 史卫亚 +1 位作者 张世强 张绍文 《科学技术与工程》 北大核心 2023年第6期2499-2508,共10页
视网膜血管复杂且背景与视杯视盘区域相似,是造成视杯视盘分割精度不高的原因。为了更加准确地分割视杯视盘,设计了一种具有双支路特征融合的分割网络。网络主支使用Transformer对特征进行提取,弥补了卷积运算在建立远程关系方面存在的... 视网膜血管复杂且背景与视杯视盘区域相似,是造成视杯视盘分割精度不高的原因。为了更加准确地分割视杯视盘,设计了一种具有双支路特征融合的分割网络。网络主支使用Transformer对特征进行提取,弥补了卷积运算在建立远程关系方面存在的不足。采用多个模块来融合浅层空间特征与高级语义特征:尺度感知-特征融合模块(SCA-FFM)用于从高层次特征中收集视盘和视杯的语义和位置信息;识别模块(IM)利用注意力机制减少低层次特征中存在的错误信息和噪声,增强空间细节特征的提取;使用图卷积域-特征融合模块(GCD-FFM)将高级语义特征和低级特征进行融合,使特征图同时具有全局和局部信息。对比实验表明,本文方法表现出更好的分割效果,且具备良好的泛化能力。 展开更多
关键词 青光眼 视盘分割 视杯分割 TRANSFORMER 特征融合
下载PDF
一种基于改进Attention U-net的联合视杯视盘分割方法 被引量:1
13
作者 秦运输 王行甫 《计算机应用与软件》 北大核心 2021年第3期181-189,共9页
青光眼是当前世界范围内致盲的主要病因之一,其发病过程没有明显的特征。视杯盘比是青光眼诊断中最主要的评估指标之一,这使得视杯视盘的分割成为了目前青光眼诊断的关键。已有的视杯视盘分割方法大多基于手工提取的特征,低效且精度不... 青光眼是当前世界范围内致盲的主要病因之一,其发病过程没有明显的特征。视杯盘比是青光眼诊断中最主要的评估指标之一,这使得视杯视盘的分割成为了目前青光眼诊断的关键。已有的视杯视盘分割方法大多基于手工提取的特征,低效且精度不高。提出一种名为MAR2U-net的深度神经网络架构用于青光眼视杯视盘的联合分割。它是基于Attention U-net的一种改进架构,通过在Attention U-net的基础之上引入递归残差卷积模块来提取更加深层次的特征,并结合多尺度的输入和多标签的Focal Tversky损失函数来提升模型的联合分割性能。实验结果表明,该方法在REFUGE数据集上的分割效果较已有方法取得了显著提升,为实现大规模的青光眼诊断筛查提供了基础。 展开更多
关键词 青光眼检测 视杯与视盘 分割 ATTENTION U-net
下载PDF
基于改进U-Net的视盘视杯分割方法的研究 被引量:2
14
作者 茅前 江旻珊 魏静 《光学仪器》 2021年第1期21-27,共7页
基于数字眼底图像进行视盘视杯分割是青光眼常用的诊断方法。为了更加精确地分割视盘视杯,提出了一种基于改进U-Net的视盘视杯分割方法。在传统U-Net的基础上,使用残差块改进了下采样部分,并使用卷积操作改进U-net中的跳层连接部分,使... 基于数字眼底图像进行视盘视杯分割是青光眼常用的诊断方法。为了更加精确地分割视盘视杯,提出了一种基于改进U-Net的视盘视杯分割方法。在传统U-Net的基础上,使用残差块改进了下采样部分,并使用卷积操作改进U-net中的跳层连接部分,使网络更加充分地获取特征信息。使用多种性能指标对训练的模型进行评价,结果表明,视盘模型和视杯模型在DRISHTI-GS数据集上的DICE系数分别达到了98.3%和97.2%,IOU系数分别达到了93.2%和88.5%。 展开更多
关键词 青光眼 视杯 视盘 U-NET 分割
下载PDF
多专家注释的视杯和视盘不确定性量化
15
作者 刘丽霞 宣士斌 +1 位作者 刘畅 李嘉祥 《计算机工程》 CAS CSCD 北大核心 2023年第1期250-257,269,共9页
现有基于深度学习的视杯和视盘分割方法在模型训练时,仅使用图像的单个注释或从多个注释中获取唯一的注释信息,忽略原始多专家标注中嵌入的一致性或差异性信息,从而导致模型和预测结果过度自信等问题。提出一种基于多解码器不确定性感... 现有基于深度学习的视杯和视盘分割方法在模型训练时,仅使用图像的单个注释或从多个注释中获取唯一的注释信息,忽略原始多专家标注中嵌入的一致性或差异性信息,从而导致模型和预测结果过度自信等问题。提出一种基于多解码器不确定性感知体系的模型MUA-Net。通过引入专业知识推断模块,将各个专家注释的专业知识水平作为先验知识嵌入编码器和解码器的瓶颈中,以形成包含专家线索的高级语义特征。利用可同时学习多个注释的多解码器结构调节多专家之间的分歧,重构多专家注释过程,并对不确定或分歧区域进行量化。提出一种双分支软注意机制,增强多解码器分割预测的模糊区域,得到最终校准的分割结果。实验结果表明,该模型在RIGA数据集上能以较高的不确定性预测合理的区域,与MRNet模型相比,该模型在视杯分割中的平均精度、Dice系数、交并比分别提升了0.75、0.39、0.41个百分点。 展开更多
关键词 不确定性估计 多解码器 多专家注释 视杯视盘分割 软注意机制
下载PDF
一种用于青光眼视杯盘分割的改进U-Net算法 被引量:1
16
作者 柴家星 李峰 +3 位作者 席千千 肖泽华 严磊 王宇光 《软件导刊》 2021年第9期223-227,共5页
青光眼已成为全球致盲的主要原因之一。通常,眼科医生利用彩色眼底图像对患者的视神经头(ONH)区域进行评估以诊断青光眼。然而,作为ONH评估重要指标之一的杯盘比(CDR)大都由医生进行人工测量和计算,耗时、费力且带有一定的主观性。为此... 青光眼已成为全球致盲的主要原因之一。通常,眼科医生利用彩色眼底图像对患者的视神经头(ONH)区域进行评估以诊断青光眼。然而,作为ONH评估重要指标之一的杯盘比(CDR)大都由医生进行人工测量和计算,耗时、费力且带有一定的主观性。为此,提出一种基于改进U-Net的青光眼视杯盘分割算法,在U-Net的编码部分采用ResNet50的映射叠加方式,有效提取图像深层信息。结果表明,所设计模型在公开的DRIONSDB、RIM-ONE和DRISHTI-GS数据集上分别获得AUC值为0.982、0.962和0.989;针对视盘区域分割,IOU分别为0.93、0.94和0.93,Dice系数分别为0.96、0.97和0.97;在RIM-ONE和DRISHTI-GS数据集上,针对视杯区域分割,IOU分别为0.845与0.93,Dice系数分别为0.923与0.967。与眼科医生分割结果相比,其标准误差小于0.16,验证了该算法的优越性能。 展开更多
关键词 青光眼 视杯盘分割 U-Net算法 深度学习
下载PDF
基于改进U-Net的联合视杯视盘分割方法
17
作者 阎世梁 王银玲 +3 位作者 路丹丹 熊亮 卜英博 徐杨 《微电子学与计算机》 2023年第10期90-101,共12页
为了实现眼底图像视杯视盘的精准分割,减少人工分割方法带来的不确定性和耗时性,本文提出了一种新型的卷积神经网络用于联合视杯视盘的分割,称为M2DS-TransUNet.该网络采用一种多分辨率图像结合并通过压缩与激励模块进行自适应提取的输... 为了实现眼底图像视杯视盘的精准分割,减少人工分割方法带来的不确定性和耗时性,本文提出了一种新型的卷积神经网络用于联合视杯视盘的分割,称为M2DS-TransUNet.该网络采用一种多分辨率图像结合并通过压缩与激励模块进行自适应提取的输入形式,同时结合多分辨率模块、Transformer和深度监督机制的优势,使得网络可以提取更加丰富的图像信息.采用五折交叉验证的方式对网络模型进行训练,并在当前三个主流数据集REFUGE、DRISHTI-GS和RIM-ONE-r3上进行了实验验证与评估,在最能体现分割效果的杯盘比指标上分别达到了0.0284、0.0978和0.0179,其分割效果优于当前的一些经典算法.实验结果表明,本文所提出的方法可以提取更为丰富的视杯视盘信息,且具有跨数据集的泛化能力,是一种非常有竞争力的眼底图像视杯视盘联合分割方法. 展开更多
关键词 视杯视盘 分割 U-Net TRANSFORMER 深度监督机制
下载PDF
基于图像处理的青光眼分类研究
18
作者 李琦峰 郭莹 《微处理机》 2023年第1期57-59,共3页
青光眼致盲率高,检测难度大,视盘及视杯检测对青光眼早期诊断至为关键,为提高检测效率,提出一种改进的青光眼分类方法。方法通过掩膜闭合操作分割视盘,再将超像素分割与阈值相结合分割视杯,从中提取杯盘比特征来.对青光眼进行分类。详... 青光眼致盲率高,检测难度大,视盘及视杯检测对青光眼早期诊断至为关键,为提高检测效率,提出一种改进的青光眼分类方法。方法通过掩膜闭合操作分割视盘,再将超像素分割与阈值相结合分割视杯,从中提取杯盘比特征来.对青光眼进行分类。详细介绍视盘区域的确定过程,以及如何通过阈值和椭圆拟合得到的视杯候选区域。在实验中通过REFUGE数据库进行测试,获得最终分类结果,识别准确率可达83.64%。该分类方法具有较高精度,在同类研究当中具有一定的竞争优势。 展开更多
关键词 图像分割 目标识别 青光眼检测 视盘 视杯 超像素
下载PDF
基于深度卷积神经网络的青光眼诊断方法研究
19
作者 胡典 郑璐瑶 +2 位作者 郭彦铭 计明杰 徐光毅 《微处理机》 2020年第6期48-52,共5页
单一特征无法准确描述青光眼图像改变,使得计算机辅助的青光眼检测技术具有较高的误诊率和漏诊率,针对这一问题,对视盘区域在深度卷积神经网络结构中的上下文信息进行研究,以辅助眼科医生对青光眼进行诊断。对原始眼底图像进行预处理操... 单一特征无法准确描述青光眼图像改变,使得计算机辅助的青光眼检测技术具有较高的误诊率和漏诊率,针对这一问题,对视盘区域在深度卷积神经网络结构中的上下文信息进行研究,以辅助眼科医生对青光眼进行诊断。对原始眼底图像进行预处理操作,减少背景噪声和视网膜血管对视盘区域分割的影响;基于深度卷积神经网络模型使用k-means算法对视杯进行分割,并结合视杯呈圆形或椭圆形特性,利用基于最小二乘法椭圆拟合算法将不规则的曲线拟合成规则的椭圆形,以提高视盘视杯分割和青光眼检测的性能,最终在Drishti-GS1数据库图像中完成了测试。实验结果表明,该方法对青光眼进一步诊断有较好的鲁棒性和准确性。 展开更多
关键词 深度卷积神经网络 青光眼检测 视盘和视杯分割
下载PDF
融合残差上下文编码和路径增强的视杯视盘分割
20
作者 梅华威 尚虹霖 +1 位作者 苏攀 刘艳平 《中国图象图形学报》 CSCD 北大核心 2024年第3期637-654,共18页
目的 从眼底图像中分割视盘和视杯对于眼部疾病智能诊断来说是一项重要工作,U-Net及变体模型已经广泛应用在视杯盘分割任务中。由于连续的卷积与池化操作容易引起空间信息损失,导致视盘和视杯分割精度差且效率低。提出了融合残差上下文... 目的 从眼底图像中分割视盘和视杯对于眼部疾病智能诊断来说是一项重要工作,U-Net及变体模型已经广泛应用在视杯盘分割任务中。由于连续的卷积与池化操作容易引起空间信息损失,导致视盘和视杯分割精度差且效率低。提出了融合残差上下文编码和路径增强的深度学习网络RCPA-Net,提升了分割结果的准确性与连续性。方法 采用限制对比度自适应直方图均衡方法处理输入图像,增强对比度并丰富图像信息。特征编码模块以ResNet34(residual neural network)为骨干网络,通过引入残差递归与注意力机制使模型更关注感兴趣区域,采用残差空洞卷积模块捕获更深层次的语义特征信息,使用路径增强模块在浅层特征中获得精确的定位信息来增强整个特征层次。本文还提出了一种新的多标签损失函数用于提高视盘视杯与背景区域的像素比例并生成最终的分割图。结果 在4个数据集上与多种分割方法进行比较,在ORIGA(online retinal fundus image database for glaucoma analysis)数据集中,本文方法对视盘分割的JC(Jaccard)指数为0.939 1,F-measure为0.968 6,视杯分割的JC和Fmeasure分别为0.794 8和0.885 5;在Drishti-GS1数据集中,视盘分割的JC和F-measure分别为0.951 3和0.975 0,视杯分割的JC和F-measure分别为0.863 3和0.926 6;在Refuge(retinal fundus glaucoma challenge)数据集中,视盘分割的JC和F-measure分别为0.929 8和0.963 6,视杯分割的JC和F-measure分别为0.828 8和0.906 3;在RIM-ONE(retinal image database for optic nerve evaluation)-R1数据集中,视盘分割的JC和F-measure分别为0.929 0和0.9628。在4个数据集上结果均优于对比算法,性能显著提升。此外,针对网络中提出的模块分别做了消融实验,验证了RCPA-Net中各个模块的有效性。结论 实验结果表明,RCPA-Net提升了视盘和视杯分割精度,预测图像更接近真实标签结果,同时跨数据集测试结果证明了RCPA-Net具有良好的泛化能力。 展开更多
关键词 视杯视盘分割 深度学习 注意力机制 残差空洞卷积 路径增强
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部