We construct a power enhancement cavity to form an optical lattice in an ytterbium optical clock.It is demonstrated that the intra-cavity lattice power can be increased by about 45 times,and the trap depth can be as l...We construct a power enhancement cavity to form an optical lattice in an ytterbium optical clock.It is demonstrated that the intra-cavity lattice power can be increased by about 45 times,and the trap depth can be as large as 1400Er when laser light with a power of only 0.6 W incident to the lattice cavity.Such high trap depths are the key to accurate evaluation of the lattice-induced light shift with an uncertainty down to~1×10-18.By probing the ytterbium atoms trapped in the power-enhanced optical lattice,we obtain a 4.3 Hz-linewidth Rabi spectrum,which is then used to feedback to the clock laser for the close loop operation of the optical lattice clock.We evaluate the density shift of the Yb optical lattice clock based on interleaving measurements,which is-0.46(62)mHz.This result is smaller compared to the density shift of our first Yb optical clock without lattice power enhancement cavity mainly due to a larger lattice diameter of 344μm.展开更多
In recent years,space-division multiplexing(SDM)technology,which involves transmitting data information on multiple parallel channels for efficient capacity scaling,has been widely used in fiber and free-space optical...In recent years,space-division multiplexing(SDM)technology,which involves transmitting data information on multiple parallel channels for efficient capacity scaling,has been widely used in fiber and free-space optical communication sys-tems.To enable flexible data management and cope with the mixing between different channels,the integrated reconfig-urable optical processor is used for optical switching and mitigating the channel crosstalk.However,efficient online train-ing becomes intricate and challenging,particularly when dealing with a significant number of channels.Here we use the stochastic parallel gradient descent(SPGD)algorithm to configure the integrated optical processor,which has less com-putation than the traditional gradient descent(GD)algorithm.We design and fabricate a 6×6 on-chip optical processor on silicon platform to implement optical switching and descrambling assisted by the online training with the SPDG algorithm.Moreover,we apply the on-chip processor configured by the SPGD algorithm to optical communications for optical switching and efficiently mitigating the channel crosstalk in SDM systems.In comparison with the traditional GD al-gorithm,it is found that the SPGD algorithm features better performance especially when the scale of matrix is large,which means it has the potential to optimize large-scale optical matrix computation acceleration chips.展开更多
AIM:To analyze the relationship between optical coherence tomography(OCT)and OCT angiography(OCTA)imaging in patients with diabetic macular edema(DME)who are treated with a combination of aflibercept and triamcinolone...AIM:To analyze the relationship between optical coherence tomography(OCT)and OCT angiography(OCTA)imaging in patients with diabetic macular edema(DME)who are treated with a combination of aflibercept and triamcinolone acetonide(TA).METHODS:A total of 76 eyes newly diagnosed DME were included in this study.They were randomly assigned to receive either aflibercept or a combination of aflibercept and TA.Injections once a month for a total of three injections.Central macular thickness(CMT),number of hyperreflective foci(HRF),height of subretinal fluid(SRF),and area of foveal avascular zone(FAZ)were evaluated using OCT and OCTA at baseline and after each monthly treatment.RESULTS:Both groups showed improvement in best corrected visual acuity(BCVA)and reduction in macular edema after treatment,and the difference in BCVA between the two groups was statistically significant after each treatment(P<0.05).The difference in CMT between the two groups was statistically significant after the first two injections(P<0.01),but not after the third injection(P=0.875).The number of HRF(1mo:7.41±8.25 vs 10.86±7.22,P=0.027;2mo:5.33±6.13 vs 9.12±8.61,P=0.034;3mo:3.58±3.00 vs 6.37±5.97,P=0.007)and height of SRF(1mo:82.39±39.12 vs 105.77±42.26μm,P=0.011;2mo:36.84±10.02 vs 83.59±37.78μm,P<0.01;3mo:11.57±3.29 vs 45.43±12.60μm,P<0.01)in combined group were statistically significant less than aflibercept group after each injection,while the area of FAZ showed no significant change before and after treatment in both groups.CONCLUSION:The combination therapy of aflibercept and TA shows more significant effects on DME eyes with decreased HRF and SRF.However,both aflibercept and combination therapy show no significant change in the area of FAZ.展开更多
We report on the performance improvement of long-wave infrared quantum cascade lasers(LWIR QCLs)by studying and optimizing the anti-reflection(AR)optical facet coating.Compared to the Al2O3 AR coat⁃ing,the Y_(2)O_(3)A...We report on the performance improvement of long-wave infrared quantum cascade lasers(LWIR QCLs)by studying and optimizing the anti-reflection(AR)optical facet coating.Compared to the Al2O3 AR coat⁃ing,the Y_(2)O_(3)AR coating exhibits higher catastrophic optical mirror damage(COMD)level,and the optical facet coatings of both material systems have no beam steering effect.A 3-mm-long,9.5-μm-wide buried-heterostruc⁃ture(BH)LWIR QCL ofλ~8.5μm with Y_(2)O_(3)metallic high-reflection(HR)and AR of~0.2%reflectivity coating demonstrates a maximum pulsed peak power of 2.19 W at 298 K,which is 149%higher than that of the uncoated device.For continuous-wave(CW)operation,by optimizing the reflectivity of the Y_(2)O_(3)AR coating,the maximum output power reaches 0.73 W,which is 91%higher than that of the uncoated device.展开更多
Optical frequency combs,as powerful tools for precision spectroscopy and research into optical frequency standards,have driven continuous progress and significant breakthroughs in applications such as time-frequency t...Optical frequency combs,as powerful tools for precision spectroscopy and research into optical frequency standards,have driven continuous progress and significant breakthroughs in applications such as time-frequency transfer,measurement of fundamental physical constants,and high-precision ranging,achieving a series of milestone results in ground-based environments.With the continuous maturation and evolution of femtosecond lasers and related technologies,optical frequency combs are moving from ground-based applications to astronomical and space-based applications,playing an increasingly important role in atomic clocks,exoplanet observations,gravitational wave measurements,and other areas.This paper,focusing on astronomical and space-based applications,reviews research progress on astronomical frequency combs,optical clock time-frequency networks,gravitational waves,dark matter measurement,dual-comb large-scale absolute ranging,and high-resolution atmospheric spectroscopy.With enhanced performance and their gradual application in the field of space-based research,optical frequency combs will undoubtedly provide more powerful support for astronomical science and cosmic exploration in the future.展开更多
As edge computing services soar,the problem of resource fragmentation situation is greatly worsened in elastic optical networks(EON).Aimed to solve this problem,this article proposes the fragmentation prediction model...As edge computing services soar,the problem of resource fragmentation situation is greatly worsened in elastic optical networks(EON).Aimed to solve this problem,this article proposes the fragmentation prediction model that makes full use of the gate recurrent unit(GRU)algorithm.Based on the fragmentation prediction model,one virtual optical network mapping scheme is presented for edge computing driven EON.With the minimum of fragmentation degree all over the whole EON,the virtual network mapping can be successively conducted.Test results show that the proposed approach can reduce blocking rate,and the supporting ability for virtual optical network services is greatly improved.展开更多
Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts ...Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts and restore texture completely in OCT images.We proposed a deep learning-based inpainting method of saturation artifacts in this paper.The generation mechanism of saturation artifacts was analyzed,and experimental and simulated datasets were built based on the mechanism.Enhanced super-resolution generative adversarial networks were trained by the clear–saturated phantom image pairs.The perfect reconstructed results of experimental zebrafish and thyroid OCT images proved its feasibility,strong generalization,and robustness.展开更多
There is a certain failure rate in traditional glaucoma surgery because of the lack of depth information in microscope images.In this work,we present a digital microscope-integrated optical coherence tomography(MIOCT)...There is a certain failure rate in traditional glaucoma surgery because of the lack of depth information in microscope images.In this work,we present a digital microscope-integrated optical coherence tomography(MIOCT)system and several custom-made OCT-compatible instruments for glaucoma surgery.Sixteen ophthalmologists were asked to perform trabeculectomy and canaloplasty on live porcine eyes using the system and instruments.After surgery,a subjective feedback survey about the user experience was taken.The experiment results showed that our system can help surgeons easily locate important tissue structures during surgery.The custom-made instruments also solved the shadowing problem in OCT imaging.Surgeons preferred to use the system in their future practice.展开更多
We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase lockin...We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase locking loop in the conventional active phase control scheme,the passive phase noise cancellation is realized by feeding double-trip beat-note frequency to the driver of the acoustic optical modulator at the local site.This passive scheme exhibits fine robustness and reliability,making it suitable for long-distance and noisy fiber links.An optical regeneration station is used in the link for signal amplification and cascaded transmission.The phase noise cancellation and transfer instability of the 972-km link is investigated,and transfer instability of 1.1×10^(-19)at 10^(4)s is achieved.This work provides a promising method for realizing optical frequency distribution over thousands of kilometers by using fiber links.展开更多
Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since...Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.展开更多
AIM:To compare the three-dimensional choroidal vascularity index(CVI)and choroidal thickness between fellow eyes of acute primary angle-closure(F-APAC)and chronic primary angle-closure glaucoma(F-CPACG)and the eyes of...AIM:To compare the three-dimensional choroidal vascularity index(CVI)and choroidal thickness between fellow eyes of acute primary angle-closure(F-APAC)and chronic primary angle-closure glaucoma(F-CPACG)and the eyes of normal controls.METHODS:This study included 37 patients with unilateral APAC,37 with asymmetric CPACG without prior treatment,and 36 healthy participants.Using swept-source optical coherence tomography(SS-OCT),the macular and peripapillary choroidal thickness and three-dimensional CVI were measured and compared globally and sectorally.Pearson’s correlation analysis and multivariate regression models were used to evaluate choroidal thickness or CVI with related factors.RESULTS:The mean subfoveal CVIs were 0.35±0.10,0.33±0.09,and 0.29±0.04,and the mean subfoveal choroidal thickness were 315.62±52.92,306.22±59.29,and 262.69±45.55μm in the F-APAC,F-CPACG,and normal groups,respectively.All macular sectors showed significantly higher CVIs and choroidal thickness in the F-APAC and F-CPACG eyes than in the normal eyes(P<0.05),while there were no significant differences between the F-APAC and F-CPACG eyes.In the peripapillary region,the mean overall CVIs were 0.21±0.08,0.20±0.08,and 0.19±0.05,and the mean overall choroidal thickness were 180.45±54.18,174.82±50.67,and 176.18±37.94μm in the F-APAC,F-CPACG,and normal groups,respectively.There were no significant differences between any of the two groups in all peripapillary sectors.Younger age,shorter axial length,and the F-APAC or F-CPACG diagnosis were significantly associated with higher subfoveal CVI and thicker subfoveal choroidal thickness(P<0.05).CONCLUSION:The fellow eyes of unilateral APAC or asymmetric CPACG have higher macular CVI and choroidal thickness than those of the normal controls.Neither CVI nor choroidal thickness can distinguish between eyes predisposed to APAC or CPACG.A thicker choroid with a higher vascular volume may play a role in the pathogenesis of primary angle-closure glaucoma.展开更多
In this work,we present an intravascular dual-mode endoscopic system capable of both intravascular photoacoustic imaging(IVPAI)and intravascular optical coherence tomography(IVOCT)for recognizing spontaneous coronary ...In this work,we present an intravascular dual-mode endoscopic system capable of both intravascular photoacoustic imaging(IVPAI)and intravascular optical coherence tomography(IVOCT)for recognizing spontaneous coronary artery dissection(SCAD)phantoms.IVPAI provides high-resolution and high-penetration images of intramural hematoma(IMH)at different depths,so it is especially useful for imaging deep blood clots associated with imaging phantoms.IVOCT can readily visualize the double-lumen morphology of blood vessel walls to identify intimal tears.We also demonstrate the capability of this dual-mode endoscopic system using mimicking phantoms and biological samples of blood clots in ex vivo porcine arteries.The results of the experiments indicate that the combined IVPAI and IVOCT technique has the potential to provide a more accurate SCAD assessment method for clinical applications.展开更多
Laser absorption spectroscopy has proven to be an effective approach for gas sensing, which plays an important rolein the fields of military, industry, medicine and basic research. This paper presents a multiplexed ga...Laser absorption spectroscopy has proven to be an effective approach for gas sensing, which plays an important rolein the fields of military, industry, medicine and basic research. This paper presents a multiplexed gas sensing system basedon optical frequency comb (OFC) calibrated frequency-modulated continuous-wave (FMCW) tuning nonlinearity. Thesystem can be used for multi-parameter synchronous measurement of gas absorption spectrum and multiplexed opticalpath. Multi-channel parallel detection is realized by combining wavelength division multiplexing (WDM) and frequencydivision multiplexing (FDM) techniques. By introducing nonlinear optical crystals, broadband spectrum detection is simultaneouslyachieved over a bandwidth of hundreds of nanometers. An OFC with ultra-high frequency stability is used asthe frequency calibration source, which guarantees the measurement accuracy. The test samples involve H13C14N, C_(2)H_(2)and Rb vapor cells of varying densities and 5 parallel measurement experiments are designed. The results show that themeasurement accuracies of spectral absorption line and the optical path are 150 MHz and 20 m, respectively. The schemeoffers the advantages of multiplexed, multi-parameter, wide spectrum and high resolution detection, which can realize theidentification of multi-gas components and the high-precision inversion of absorption lines under different environments.The proposed sensor demonstrates great potential in the field of high-resolution absorption spectrum measurement for gassensing applications.展开更多
The study of nonlinear optical responses in the mid-infrared(mid-IR)regime is essential for advancing ultrafast mid-IR laser applications.However,nonlinear optical effects under mid-IR excitation are rarely reported d...The study of nonlinear optical responses in the mid-infrared(mid-IR)regime is essential for advancing ultrafast mid-IR laser applications.However,nonlinear optical effects under mid-IR excitation are rarely reported due to the lack of suitable nonlinear optical materials.The natural van derWaals heterostructure franckeite,known for its narrow bandgap and stability in air,shows great potential for developing mid-IR nonlinear optical devices.We have experimentally demonstrated that layered franckeite exhibits a broadband wavelength-dependent nonlinear optical response in the mid-IR spectral region.Franckeite nanosheets were prepared using a liquid-phase exfoliation method,and their nonlinear optical response was characterized in the spectral range of 3000 nm to 5000 nm.The franckeite nanosheets exhibit broadband wavelengthdependent third-order nonlinearities,with nonlinear absorption and refraction coefficients estimated to be about 10^(-7)cm/W and 10^(-11)cm^(2)/W,respectively.Additionally,a passively Q-switched fluoride fiber laser operating around a wavelength of 2800 nm was achieved,delivering nanosecond pulses with a signal-to-noise ratio of 43.6 dB,based on the nonlinear response of franckeite.These findings indicate that layered franckeite possesses broadband nonlinear optical characteristics in the mid-IR region,potentially enabling new possibilities for mid-IR photonic devices.展开更多
This study investigates the properties of exciton-polaritons in a two-dimensional(2D)hybrid organic-inorganic perovskite microcavity in the presence of optical Stark effect.Through both steady and dynamic state analys...This study investigates the properties of exciton-polaritons in a two-dimensional(2D)hybrid organic-inorganic perovskite microcavity in the presence of optical Stark effect.Through both steady and dynamic state analyses,strong coupling between excitons of perovskite and cavity photons is revealed,indicating the formation of polaritons in the perovskite microcavity.Besides,it is found that an external optical Stark pulse can induce energy shifts of excitons proportional to the pulse intensity,which modifies the dispersion characteristics of the polaritons.展开更多
Internal solitary waves(ISWs)change the roughness of the sea surface,thus producing dark and bright bands in optical images.However,reasons for changes in imaging characteristics with the solar zenith angle remain unc...Internal solitary waves(ISWs)change the roughness of the sea surface,thus producing dark and bright bands in optical images.However,reasons for changes in imaging characteristics with the solar zenith angle remain unclear.In this paper,the optical imaging pattern of ISWs in sunglint under different zenith angles of the light source is investigated by collecting optical images of ISWs through physical simulation.The experiment involves setting 10 zenith angles of the light source,which are divided into area a the optical images of ISWs in the three areas show dark-bright mode,single bright band,and bright-dark mode,which are consistent with those observed by optical remote sensing.In addition,this study analyzed the percentage of the dark and bright areas of the bands and the change in the relative gray difference and found changes in both areas under different zenith angles of the light source.The MODIS and ASAR images display a similar brightness-darkness distance of the same ISWs.Therefore,the relationship between the brightness-darkness distance and the characteristic half-width of ISWs is determined in accordance with the eKdV theory and the imaging mechanism of ISWs of the SAR image.Overall,the relationship between them in the experiment is almost consistent with the theoretical result.展开更多
AIM:To evaluate the predictive value of superficial retinal capillary plexus(SRCP)and radial peripapillary capillary(RPC)for visual field recovery after optic cross decompression and compare them with peripapillary ne...AIM:To evaluate the predictive value of superficial retinal capillary plexus(SRCP)and radial peripapillary capillary(RPC)for visual field recovery after optic cross decompression and compare them with peripapillary nerve fiber layer(pRNFL)and ganglion cell complex(GCC).METHODS:This prospective longitudinal observational study included patients with chiasmal compression due to sellar region mass scheduled for decompressive surgery.Generalized estimating equations were used to compare retinal vessel density and retinal layer thickness preand post-operatively and with healthy controls.Logistic regression models were used to assess the relationship between preoperative GCC,pRNFL,SRCP,and RPC parameters and visual field recovery after surgery.RESULTS:The study included 43 eyes of 24 patients and 48 eyes of 24 healthy controls.Preoperative RPC and SRCP vessel density and pRNFL and GCC thickness were lower than healthy controls and higher than postoperative values.The best predictive GCC and pRNFL models were based on the superior GCC[area under the curve(AUC)=0.866]and the tempo-inferior pRNFL(AUC=0.824),and the best predictive SRCP and RPC models were based on the nasal SRCP(AUC=0.718)and tempo-inferior RPC(AUC=0.825).There was no statistical difference in the predictive value of the superior GCC,tempo-inferior pRNFL,and tempo-inferior RPC(all P>0.05).CONCLUSION:Compression of the optic chiasm by tumors in the saddle area can reduce retinal thickness and blood perfusion.This reduction persists despite the recovery of the visual field after decompression surgery.GCC,pRNFL,and RPC can be used as sensitive predictors of visual field recovery after decompression surgery.展开更多
Nanocomposite films consisting of carboxymethyl cellulose,polyethylene oxide(CMC/PEO),and anatase titanium diox-ide(TO)were produced by the use of sol-gel and solution casting techniques.TiO2 nanocrystals were effecti...Nanocomposite films consisting of carboxymethyl cellulose,polyethylene oxide(CMC/PEO),and anatase titanium diox-ide(TO)were produced by the use of sol-gel and solution casting techniques.TiO2 nanocrystals were effectively incorporated into CMC/PEO polymers,as shown by X-ray diffraction(XRD)and attenuated total reflectance fourier transform infrared(ATR-FTIR)analysis.The roughness growth is at high levels of TO nanocrystals(TO NCs),which means increasing active sites and defects in CMC/PEO.In differential scanning calorimetry(DSC)thermograms,the change in glass transition temperature(Tg)val-ues verifies that the polymer blend interacts with TO NCs.The increment proportions of TO NCs have a notable impact on the dielectric performances of the nanocomposites,as observed.The electrical properties of the CMC/PEO/TO nanocomposite undergo significant changes.The nanocomposite films exhibit a red alteration in the absorption edge as the concentration of TO NCs increases in the polymer blend.The decline in the energy gap is readily apparent as the weight percentage of TO NCs increases.The photoluminescence(PL)emission spectra indicate that the sites of the luminescence peak maximums show slight variation;peaks get wider,while their intensities decrease dramatically as the concentration of TO increases.These nanocomposite materials show potential for multifunctional applications including optoelectronics,antireflection coatings,pho-tocatalysis,light emitting diodes,and solid polymer electrolytes.展开更多
To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these me...To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these methods often require complex systems and the effect of age on cerebral embolism has not been adequately studied,although ischemic stroke is strongly age-related.In this study,we propose an optical-resolution photoacoustic microscopy-based visualized photothrombosis methodology to create and monitor ischemic stroke in mice simultaneously using a 532 nm pulsed laser.We observed the molding process in mice of different ages and presented age-dependent vascular embolism differentiation.Moreover,we integrated optical coherence tomography angiography to investigate age-associated trends in cerebrovascular variability following a stroke.Our imaging data and quantitative analyses underscore the differential cerebrovascular responses to stroke in mice of different ages,thereby highlighting the technique's potential for evaluating cerebrovascular health and unraveling age-related mechanisms involved in ischemic strokes.展开更多
Underwater target motion estimation is a challenge for ocean military and scientific research.In this work,we propose a method based on the combination of polarization imaging and optical flow for turbid underwater ta...Underwater target motion estimation is a challenge for ocean military and scientific research.In this work,we propose a method based on the combination of polarization imaging and optical flow for turbid underwater target detection.Polarization imaging can reduce the influence of backscattered light and obtain high-quality images underwater.The optical flow shows the motion and structural information of the target.We use polarized optical flow to obtain the optical flow field and estimate the target motion.The experimental results of different targets under varying water turbidity levels illustrate that our method is realizable and robust.The precision is verified by comparing the results with the precise displacement data and calculating two error measures.The proposed method based on polarized optical flow can obtain accurate displacement information and a good recognition effect.Moving target segmentation based on the Otsu method further proves the superiority of the polarized optical flow under turbid water.This study is valuable for target detection and motion estimation in scattering environments.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12334020 and 11927810)the National Key Research and Development Program of China(Grant No.2022YFB3904001).
文摘We construct a power enhancement cavity to form an optical lattice in an ytterbium optical clock.It is demonstrated that the intra-cavity lattice power can be increased by about 45 times,and the trap depth can be as large as 1400Er when laser light with a power of only 0.6 W incident to the lattice cavity.Such high trap depths are the key to accurate evaluation of the lattice-induced light shift with an uncertainty down to~1×10-18.By probing the ytterbium atoms trapped in the power-enhanced optical lattice,we obtain a 4.3 Hz-linewidth Rabi spectrum,which is then used to feedback to the clock laser for the close loop operation of the optical lattice clock.We evaluate the density shift of the Yb optical lattice clock based on interleaving measurements,which is-0.46(62)mHz.This result is smaller compared to the density shift of our first Yb optical clock without lattice power enhancement cavity mainly due to a larger lattice diameter of 344μm.
基金supported by the National Natural Science Foundation of China(NSFC)(62125503,62261160388)the Natural Science Foundation of Hubei Province of China(2023AFA028)the Innovation Project of Optics Valley Laboratory(OVL2021BG004).
文摘In recent years,space-division multiplexing(SDM)technology,which involves transmitting data information on multiple parallel channels for efficient capacity scaling,has been widely used in fiber and free-space optical communication sys-tems.To enable flexible data management and cope with the mixing between different channels,the integrated reconfig-urable optical processor is used for optical switching and mitigating the channel crosstalk.However,efficient online train-ing becomes intricate and challenging,particularly when dealing with a significant number of channels.Here we use the stochastic parallel gradient descent(SPGD)algorithm to configure the integrated optical processor,which has less com-putation than the traditional gradient descent(GD)algorithm.We design and fabricate a 6×6 on-chip optical processor on silicon platform to implement optical switching and descrambling assisted by the online training with the SPDG algorithm.Moreover,we apply the on-chip processor configured by the SPGD algorithm to optical communications for optical switching and efficiently mitigating the channel crosstalk in SDM systems.In comparison with the traditional GD al-gorithm,it is found that the SPGD algorithm features better performance especially when the scale of matrix is large,which means it has the potential to optimize large-scale optical matrix computation acceleration chips.
基金Supported by the Natural Science Foundation of Guangdong Province,China(No.2022A1515010742)Hunan Provincial Natural Science Foundation of China(No.2023JJ70039)Scientific Research Program of Xiangjiang Philanthropy Foundation.
文摘AIM:To analyze the relationship between optical coherence tomography(OCT)and OCT angiography(OCTA)imaging in patients with diabetic macular edema(DME)who are treated with a combination of aflibercept and triamcinolone acetonide(TA).METHODS:A total of 76 eyes newly diagnosed DME were included in this study.They were randomly assigned to receive either aflibercept or a combination of aflibercept and TA.Injections once a month for a total of three injections.Central macular thickness(CMT),number of hyperreflective foci(HRF),height of subretinal fluid(SRF),and area of foveal avascular zone(FAZ)were evaluated using OCT and OCTA at baseline and after each monthly treatment.RESULTS:Both groups showed improvement in best corrected visual acuity(BCVA)and reduction in macular edema after treatment,and the difference in BCVA between the two groups was statistically significant after each treatment(P<0.05).The difference in CMT between the two groups was statistically significant after the first two injections(P<0.01),but not after the third injection(P=0.875).The number of HRF(1mo:7.41±8.25 vs 10.86±7.22,P=0.027;2mo:5.33±6.13 vs 9.12±8.61,P=0.034;3mo:3.58±3.00 vs 6.37±5.97,P=0.007)and height of SRF(1mo:82.39±39.12 vs 105.77±42.26μm,P=0.011;2mo:36.84±10.02 vs 83.59±37.78μm,P<0.01;3mo:11.57±3.29 vs 45.43±12.60μm,P<0.01)in combined group were statistically significant less than aflibercept group after each injection,while the area of FAZ showed no significant change before and after treatment in both groups.CONCLUSION:The combination therapy of aflibercept and TA shows more significant effects on DME eyes with decreased HRF and SRF.However,both aflibercept and combination therapy show no significant change in the area of FAZ.
基金Supported by the National Natural Science Foundation of China(12393830)。
文摘We report on the performance improvement of long-wave infrared quantum cascade lasers(LWIR QCLs)by studying and optimizing the anti-reflection(AR)optical facet coating.Compared to the Al2O3 AR coat⁃ing,the Y_(2)O_(3)AR coating exhibits higher catastrophic optical mirror damage(COMD)level,and the optical facet coatings of both material systems have no beam steering effect.A 3-mm-long,9.5-μm-wide buried-heterostruc⁃ture(BH)LWIR QCL ofλ~8.5μm with Y_(2)O_(3)metallic high-reflection(HR)and AR of~0.2%reflectivity coating demonstrates a maximum pulsed peak power of 2.19 W at 298 K,which is 149%higher than that of the uncoated device.For continuous-wave(CW)operation,by optimizing the reflectivity of the Y_(2)O_(3)AR coating,the maximum output power reaches 0.73 W,which is 91%higher than that of the uncoated device.
基金support of the National Natural Sci-ence Foundation of China(NSFC)(62305373)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA1502040404,XDB2101040004).
文摘Optical frequency combs,as powerful tools for precision spectroscopy and research into optical frequency standards,have driven continuous progress and significant breakthroughs in applications such as time-frequency transfer,measurement of fundamental physical constants,and high-precision ranging,achieving a series of milestone results in ground-based environments.With the continuous maturation and evolution of femtosecond lasers and related technologies,optical frequency combs are moving from ground-based applications to astronomical and space-based applications,playing an increasingly important role in atomic clocks,exoplanet observations,gravitational wave measurements,and other areas.This paper,focusing on astronomical and space-based applications,reviews research progress on astronomical frequency combs,optical clock time-frequency networks,gravitational waves,dark matter measurement,dual-comb large-scale absolute ranging,and high-resolution atmospheric spectroscopy.With enhanced performance and their gradual application in the field of space-based research,optical frequency combs will undoubtedly provide more powerful support for astronomical science and cosmic exploration in the future.
基金Supported by the National Key Research and Development Program of China(No.2021YFB2401204)。
文摘As edge computing services soar,the problem of resource fragmentation situation is greatly worsened in elastic optical networks(EON).Aimed to solve this problem,this article proposes the fragmentation prediction model that makes full use of the gate recurrent unit(GRU)algorithm.Based on the fragmentation prediction model,one virtual optical network mapping scheme is presented for edge computing driven EON.With the minimum of fragmentation degree all over the whole EON,the virtual network mapping can be successively conducted.Test results show that the proposed approach can reduce blocking rate,and the supporting ability for virtual optical network services is greatly improved.
基金supported by the National Natural Science Foundation of China(62375144 and 61875092)Tianjin Foundation of Natural Science(21JCYBJC00260)Beijing-Tianjin-Hebei Basic Research Cooperation Special Program(19JCZDJC65300).
文摘Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts and restore texture completely in OCT images.We proposed a deep learning-based inpainting method of saturation artifacts in this paper.The generation mechanism of saturation artifacts was analyzed,and experimental and simulated datasets were built based on the mechanism.Enhanced super-resolution generative adversarial networks were trained by the clear–saturated phantom image pairs.The perfect reconstructed results of experimental zebrafish and thyroid OCT images proved its feasibility,strong generalization,and robustness.
基金support of the foundations:National Key R&D Program of China,Grant Nos.2022YFC2404201CAS Project for Young Scientists in Basic Research,Grant Nos.YSBR-067+2 种基金The Gusu Innovation and Entrepreneurship Leading Talents in Suzhou City,Grant Nos.ZXL2021425Jiangsu Science and Technology Plan Program,Grant Nos.BK20220263National Key R&D Program of China,Grant Nos.2021YFF0700503.
文摘There is a certain failure rate in traditional glaucoma surgery because of the lack of depth information in microscope images.In this work,we present a digital microscope-integrated optical coherence tomography(MIOCT)system and several custom-made OCT-compatible instruments for glaucoma surgery.Sixteen ophthalmologists were asked to perform trabeculectomy and canaloplasty on live porcine eyes using the system and instruments.After surgery,a subjective feedback survey about the user experience was taken.The experiment results showed that our system can help surgeons easily locate important tissue structures during surgery.The custom-made instruments also solved the shadowing problem in OCT imaging.Surgeons preferred to use the system in their future practice.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12103059,12033007,12303077,and 12303076)the Fund from the Xi’an Science and Technology Bureau,China(Grant No.E019XK1S04)the Fund from the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.1188000XGJ).
文摘We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase locking loop in the conventional active phase control scheme,the passive phase noise cancellation is realized by feeding double-trip beat-note frequency to the driver of the acoustic optical modulator at the local site.This passive scheme exhibits fine robustness and reliability,making it suitable for long-distance and noisy fiber links.An optical regeneration station is used in the link for signal amplification and cascaded transmission.The phase noise cancellation and transfer instability of the 972-km link is investigated,and transfer instability of 1.1×10^(-19)at 10^(4)s is achieved.This work provides a promising method for realizing optical frequency distribution over thousands of kilometers by using fiber links.
基金support from the National Natural Science Foundation of China (No.62005164,62222507,62175101,and 62005166)the Shanghai Natural Science Foundation (23ZR1443700)+3 种基金Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission (23SG41)the Young Elite Scientist Sponsorship Program by CAST (No.20220042)Science and Technology Commission of Shanghai Municipality (Grant No.21DZ1100500)the Shanghai Municipal Science and Technology Major Project,and the Shanghai Frontiers Science Center Program (2021-2025 No.20).
文摘Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.
基金Supported by the National Natural Science Foundation of China(No.82101087)Shanghai Clinical Research Key Project(No.SHDC2020CR6029).
文摘AIM:To compare the three-dimensional choroidal vascularity index(CVI)and choroidal thickness between fellow eyes of acute primary angle-closure(F-APAC)and chronic primary angle-closure glaucoma(F-CPACG)and the eyes of normal controls.METHODS:This study included 37 patients with unilateral APAC,37 with asymmetric CPACG without prior treatment,and 36 healthy participants.Using swept-source optical coherence tomography(SS-OCT),the macular and peripapillary choroidal thickness and three-dimensional CVI were measured and compared globally and sectorally.Pearson’s correlation analysis and multivariate regression models were used to evaluate choroidal thickness or CVI with related factors.RESULTS:The mean subfoveal CVIs were 0.35±0.10,0.33±0.09,and 0.29±0.04,and the mean subfoveal choroidal thickness were 315.62±52.92,306.22±59.29,and 262.69±45.55μm in the F-APAC,F-CPACG,and normal groups,respectively.All macular sectors showed significantly higher CVIs and choroidal thickness in the F-APAC and F-CPACG eyes than in the normal eyes(P<0.05),while there were no significant differences between the F-APAC and F-CPACG eyes.In the peripapillary region,the mean overall CVIs were 0.21±0.08,0.20±0.08,and 0.19±0.05,and the mean overall choroidal thickness were 180.45±54.18,174.82±50.67,and 176.18±37.94μm in the F-APAC,F-CPACG,and normal groups,respectively.There were no significant differences between any of the two groups in all peripapillary sectors.Younger age,shorter axial length,and the F-APAC or F-CPACG diagnosis were significantly associated with higher subfoveal CVI and thicker subfoveal choroidal thickness(P<0.05).CONCLUSION:The fellow eyes of unilateral APAC or asymmetric CPACG have higher macular CVI and choroidal thickness than those of the normal controls.Neither CVI nor choroidal thickness can distinguish between eyes predisposed to APAC or CPACG.A thicker choroid with a higher vascular volume may play a role in the pathogenesis of primary angle-closure glaucoma.
基金funding from the National Natural Science Foundation of China(NSFC)under grants 61627827,61705068the Natural Science Foundation of Fujian Province 2021J01813the Fujian Medical University Research Foundation of Talented Scholars XRCZX2021004.
文摘In this work,we present an intravascular dual-mode endoscopic system capable of both intravascular photoacoustic imaging(IVPAI)and intravascular optical coherence tomography(IVOCT)for recognizing spontaneous coronary artery dissection(SCAD)phantoms.IVPAI provides high-resolution and high-penetration images of intramural hematoma(IMH)at different depths,so it is especially useful for imaging deep blood clots associated with imaging phantoms.IVOCT can readily visualize the double-lumen morphology of blood vessel walls to identify intimal tears.We also demonstrate the capability of this dual-mode endoscopic system using mimicking phantoms and biological samples of blood clots in ex vivo porcine arteries.The results of the experiments indicate that the combined IVPAI and IVOCT technique has the potential to provide a more accurate SCAD assessment method for clinical applications.
基金the National Natural Science Foun-dation of China(Grant No.52375546)the National Key Research and Development Program of China(Grant No.2022YFF0705701).
文摘Laser absorption spectroscopy has proven to be an effective approach for gas sensing, which plays an important rolein the fields of military, industry, medicine and basic research. This paper presents a multiplexed gas sensing system basedon optical frequency comb (OFC) calibrated frequency-modulated continuous-wave (FMCW) tuning nonlinearity. Thesystem can be used for multi-parameter synchronous measurement of gas absorption spectrum and multiplexed opticalpath. Multi-channel parallel detection is realized by combining wavelength division multiplexing (WDM) and frequencydivision multiplexing (FDM) techniques. By introducing nonlinear optical crystals, broadband spectrum detection is simultaneouslyachieved over a bandwidth of hundreds of nanometers. An OFC with ultra-high frequency stability is used asthe frequency calibration source, which guarantees the measurement accuracy. The test samples involve H13C14N, C_(2)H_(2)and Rb vapor cells of varying densities and 5 parallel measurement experiments are designed. The results show that themeasurement accuracies of spectral absorption line and the optical path are 150 MHz and 20 m, respectively. The schemeoffers the advantages of multiplexed, multi-parameter, wide spectrum and high resolution detection, which can realize theidentification of multi-gas components and the high-precision inversion of absorption lines under different environments.The proposed sensor demonstrates great potential in the field of high-resolution absorption spectrum measurement for gassensing applications.
基金supported by the National Natural Science Foundation of China(Grant No.61975055)the Natural Science Foundation of Hunan Province,China(Grant No.2023JJ30165)+1 种基金the Natural Science Foundation of Shandong Province,China(Grant No.ZR2022QF005)the Doctoral Fund of University of Heze(Grant No.XY22BS14).
文摘The study of nonlinear optical responses in the mid-infrared(mid-IR)regime is essential for advancing ultrafast mid-IR laser applications.However,nonlinear optical effects under mid-IR excitation are rarely reported due to the lack of suitable nonlinear optical materials.The natural van derWaals heterostructure franckeite,known for its narrow bandgap and stability in air,shows great potential for developing mid-IR nonlinear optical devices.We have experimentally demonstrated that layered franckeite exhibits a broadband wavelength-dependent nonlinear optical response in the mid-IR spectral region.Franckeite nanosheets were prepared using a liquid-phase exfoliation method,and their nonlinear optical response was characterized in the spectral range of 3000 nm to 5000 nm.The franckeite nanosheets exhibit broadband wavelengthdependent third-order nonlinearities,with nonlinear absorption and refraction coefficients estimated to be about 10^(-7)cm/W and 10^(-11)cm^(2)/W,respectively.Additionally,a passively Q-switched fluoride fiber laser operating around a wavelength of 2800 nm was achieved,delivering nanosecond pulses with a signal-to-noise ratio of 43.6 dB,based on the nonlinear response of franckeite.These findings indicate that layered franckeite possesses broadband nonlinear optical characteristics in the mid-IR region,potentially enabling new possibilities for mid-IR photonic devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11974071 and 62375040)the Sichuan Science and Technology Program(Grant Nos.2022ZYD0108 and 2023JDRC0030).
文摘This study investigates the properties of exciton-polaritons in a two-dimensional(2D)hybrid organic-inorganic perovskite microcavity in the presence of optical Stark effect.Through both steady and dynamic state analyses,strong coupling between excitons of perovskite and cavity photons is revealed,indicating the formation of polaritons in the perovskite microcavity.Besides,it is found that an external optical Stark pulse can induce energy shifts of excitons proportional to the pulse intensity,which modifies the dispersion characteristics of the polaritons.
基金National Natural Science Foundation of China (Nos.61871353 and 42006164)for their support。
文摘Internal solitary waves(ISWs)change the roughness of the sea surface,thus producing dark and bright bands in optical images.However,reasons for changes in imaging characteristics with the solar zenith angle remain unclear.In this paper,the optical imaging pattern of ISWs in sunglint under different zenith angles of the light source is investigated by collecting optical images of ISWs through physical simulation.The experiment involves setting 10 zenith angles of the light source,which are divided into area a the optical images of ISWs in the three areas show dark-bright mode,single bright band,and bright-dark mode,which are consistent with those observed by optical remote sensing.In addition,this study analyzed the percentage of the dark and bright areas of the bands and the change in the relative gray difference and found changes in both areas under different zenith angles of the light source.The MODIS and ASAR images display a similar brightness-darkness distance of the same ISWs.Therefore,the relationship between the brightness-darkness distance and the characteristic half-width of ISWs is determined in accordance with the eKdV theory and the imaging mechanism of ISWs of the SAR image.Overall,the relationship between them in the experiment is almost consistent with the theoretical result.
文摘AIM:To evaluate the predictive value of superficial retinal capillary plexus(SRCP)and radial peripapillary capillary(RPC)for visual field recovery after optic cross decompression and compare them with peripapillary nerve fiber layer(pRNFL)and ganglion cell complex(GCC).METHODS:This prospective longitudinal observational study included patients with chiasmal compression due to sellar region mass scheduled for decompressive surgery.Generalized estimating equations were used to compare retinal vessel density and retinal layer thickness preand post-operatively and with healthy controls.Logistic regression models were used to assess the relationship between preoperative GCC,pRNFL,SRCP,and RPC parameters and visual field recovery after surgery.RESULTS:The study included 43 eyes of 24 patients and 48 eyes of 24 healthy controls.Preoperative RPC and SRCP vessel density and pRNFL and GCC thickness were lower than healthy controls and higher than postoperative values.The best predictive GCC and pRNFL models were based on the superior GCC[area under the curve(AUC)=0.866]and the tempo-inferior pRNFL(AUC=0.824),and the best predictive SRCP and RPC models were based on the nasal SRCP(AUC=0.718)and tempo-inferior RPC(AUC=0.825).There was no statistical difference in the predictive value of the superior GCC,tempo-inferior pRNFL,and tempo-inferior RPC(all P>0.05).CONCLUSION:Compression of the optic chiasm by tumors in the saddle area can reduce retinal thickness and blood perfusion.This reduction persists despite the recovery of the visual field after decompression surgery.GCC,pRNFL,and RPC can be used as sensitive predictors of visual field recovery after decompression surgery.
文摘Nanocomposite films consisting of carboxymethyl cellulose,polyethylene oxide(CMC/PEO),and anatase titanium diox-ide(TO)were produced by the use of sol-gel and solution casting techniques.TiO2 nanocrystals were effectively incorporated into CMC/PEO polymers,as shown by X-ray diffraction(XRD)and attenuated total reflectance fourier transform infrared(ATR-FTIR)analysis.The roughness growth is at high levels of TO nanocrystals(TO NCs),which means increasing active sites and defects in CMC/PEO.In differential scanning calorimetry(DSC)thermograms,the change in glass transition temperature(Tg)val-ues verifies that the polymer blend interacts with TO NCs.The increment proportions of TO NCs have a notable impact on the dielectric performances of the nanocomposites,as observed.The electrical properties of the CMC/PEO/TO nanocomposite undergo significant changes.The nanocomposite films exhibit a red alteration in the absorption edge as the concentration of TO NCs increases in the polymer blend.The decline in the energy gap is readily apparent as the weight percentage of TO NCs increases.The photoluminescence(PL)emission spectra indicate that the sites of the luminescence peak maximums show slight variation;peaks get wider,while their intensities decrease dramatically as the concentration of TO increases.These nanocomposite materials show potential for multifunctional applications including optoelectronics,antireflection coatings,pho-tocatalysis,light emitting diodes,and solid polymer electrolytes.
基金supported by University of Macao,China,Nos.MYRG2022-00054-FHS and MYRG-GRG2023-00038-FHS-UMDF(to ZY)the Macao Science and Technology Development Fund,China,Nos.FDCT0048/2021/AGJ and FDCT0020/2019/AMJ and FDCT 0011/2018/A1(to ZY)Natural Science Foundation of Guangdong Province of China,No.EF017/FHS-YZ/2021/GDSTC(to ZY)。
文摘To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these methods often require complex systems and the effect of age on cerebral embolism has not been adequately studied,although ischemic stroke is strongly age-related.In this study,we propose an optical-resolution photoacoustic microscopy-based visualized photothrombosis methodology to create and monitor ischemic stroke in mice simultaneously using a 532 nm pulsed laser.We observed the molding process in mice of different ages and presented age-dependent vascular embolism differentiation.Moreover,we integrated optical coherence tomography angiography to investigate age-associated trends in cerebrovascular variability following a stroke.Our imaging data and quantitative analyses underscore the differential cerebrovascular responses to stroke in mice of different ages,thereby highlighting the technique's potential for evaluating cerebrovascular health and unraveling age-related mechanisms involved in ischemic strokes.
基金supported by the National Natural Science Foundation of China (No.52394252)the Postdoctoral Fellowship Program of CPSF (No.GZC20232497)+2 种基金the Key Research and Development Program of Shandong Province,China (No.2021ZLGX04)the Shandong Postdoctoral Science Foundation (No.SDBX2023012)the Qingdao Postdoctoral Program Grant (No.QDBSH20230202009)。
文摘Underwater target motion estimation is a challenge for ocean military and scientific research.In this work,we propose a method based on the combination of polarization imaging and optical flow for turbid underwater target detection.Polarization imaging can reduce the influence of backscattered light and obtain high-quality images underwater.The optical flow shows the motion and structural information of the target.We use polarized optical flow to obtain the optical flow field and estimate the target motion.The experimental results of different targets under varying water turbidity levels illustrate that our method is realizable and robust.The precision is verified by comparing the results with the precise displacement data and calculating two error measures.The proposed method based on polarized optical flow can obtain accurate displacement information and a good recognition effect.Moving target segmentation based on the Otsu method further proves the superiority of the polarized optical flow under turbid water.This study is valuable for target detection and motion estimation in scattering environments.