The wavelength routing technology applied to computer interconnection networks is introduced in this paper.By analyzing the relation between wavelength and network routing,we describe a concept of wavelength used as n...The wavelength routing technology applied to computer interconnection networks is introduced in this paper.By analyzing the relation between wavelength and network routing,we describe a concept of wavelength used as network IP address,and propose a wavelength routing topology to extend the scale of a network and realize the scalability of the network.Moreover,a twin wavelength ring network that is being developed in our laboratory to implement and test the function of wavelength routing is presented,and the main units of the twin wavelength ring network are presented also.According to the testing results based on a single wavelength ring network,it proves that the optical interconnection technology is a perfect technology to provide enough communication bandwidth for computer network.展开更多
The performance of optical interconnection has improved dramatically in recent years.Silicon-based optoelectronic heterogeneous integration is the key enabler to achieve high performance optical interconnection,which ...The performance of optical interconnection has improved dramatically in recent years.Silicon-based optoelectronic heterogeneous integration is the key enabler to achieve high performance optical interconnection,which not only provides the optical gain which is absent from native Si substrates and enables complete photonic functionalities on chip,but also improves the system performance through advanced heterogeneous integrated packaging.This paper reviews recent progress of silicon-based optoelectronic heterogeneous integration in high performance optical interconnection.The research status,development trend and application of ultra-low loss optical waveguides,high-speed detectors,high-speed modulators,lasers and 2D,2.5D,3D and monolithic integration are focused on.展开更多
The interconnection network is one of the key elements of distributed computing systems such as MPP (massively parallel processing) or NOWs (network of workstations).In this paper,a high speed optical interconnection ...The interconnection network is one of the key elements of distributed computing systems such as MPP (massively parallel processing) or NOWs (network of workstations).In this paper,a high speed optical interconnection data link which has been designed and implemented is presented.Using TDM (time division multiplexing),virtual parallel synchronous data transmission between the PCI buses of two computers has been achieved.The maximum data rate of the link is 1 250 Mbit/s,and the communication distance of link is more than 600 m using multi mode fibers.The design method of the high frequency electrical signals on the network interface card has been analyzed,and the efficient data transmission bandwidth of the link in different transmission modes has been tested and analyzed.展开更多
An 8×10 GHz receiver optical sub-assembly (ROSA) consisting of an 8-channel arrayed waveguide grating (AWG) and an 8-channel PIN photodetector (PD) array is designed and fabricated based on silica hybrid in...An 8×10 GHz receiver optical sub-assembly (ROSA) consisting of an 8-channel arrayed waveguide grating (AWG) and an 8-channel PIN photodetector (PD) array is designed and fabricated based on silica hybrid integration technology. Multimode output waveguides in the silica AWG with 2% refractive index difference are used to obtain fiat-top spectra. The output waveguide facet is polished to 45° bevel to change the light propagation direction into the mesa-type PIN PD, which simplifies the packaging process. The experimentM results show that the single channel I dB bandwidth of AWG ranges from 2.12nm to 3.06nm, the ROSA responsivity ranges from 0.097 A/W to 0.158A/W, and the 3dB bandwidth is up to 11 GHz. It is promising to be applied in the eight-lane WDM transmission system in data center interconnection.展开更多
A single mode hybrid Ⅲ-Ⅴ/silicon on-chip laser based on the flip-chip bonding technology for on-chip optical interconnection is demonstrated. A single mode Fabry-Perot laser structure with micro-structures on an InP...A single mode hybrid Ⅲ-Ⅴ/silicon on-chip laser based on the flip-chip bonding technology for on-chip optical interconnection is demonstrated. A single mode Fabry-Perot laser structure with micro-structures on an InP ridge waveguide is designed and fabricated on an InP/AIGaInAs multiple quantum well epitaxial layer structure wafer by using i-line lithography. Then, a silicon waveguide platform including a laser mounting stage is designed and fabricated on a silicon-on-insulator substrate. The single mode laser is flip-chip bonded on the laser mounting stage. The lasing light is butt-coupling to the silicon waveguide. The laser power output from a silicon waveguide is 1.3roW, and the threshold is 37mA at room temperature and continuous wave operation.展开更多
Electric router is widely used for multi-core system to interconnect each other. However, with the increasing number of processor cores, the probability of communication conflict between processor cores increases, and...Electric router is widely used for multi-core system to interconnect each other. However, with the increasing number of processor cores, the probability of communication conflict between processor cores increases, and the data delay increases dramatically. With the advent of optical router, the traditional electrical interconnection mode has changed to optical interconnection mode. In the packet switched optical interconnection network, the data communication mechanism consists of 3 processes: link establishment, data transmission and link termination, but the circuit-switched data transmission method greatly limits the utilization of resources. The number of micro-ring resonators in the on-chip large-scale optical interconnect network is an important parameter affecting the insertion loss. The proposed λ-route, GWOR, Crossbar structure has a large overall network insertion loss due to the use of many micro-ring resonators. How to use the least micro-ring resonator to realize non-blocking communication between multiple cores has been a research hotspot. In order to improve bandwidth and reduce access latency, an optical interconnection structure called multilevel switching optical network on chip(MSONoC) is proposed in this paper. The broadband micro-ring resonators(BMRs) are employed to reduce the number of micro-ring resonators(MRs) in the network, and the structure can provide the service of non-blocking point to point communication with the wavelength division multiplexing(WDM) technology. The results show that compared to λ-route, GWOR, Crossbar and the new topology structure, the number of micro-ring resonators of MSONoC are reduced by 95.5%, 95.5%, 87.5%, and 60% respectively. The insertion loss of the minimum link of new topology, mesh and MSONoC structure is 0.73 dB, 0.725 dB and 0.38 dB.展开更多
In recent years, explosively increasing data traffic has been boosting the con?tinuous demand of high speed optical interconnection inside or among data centers, high performance computers and even consumer electronic...In recent years, explosively increasing data traffic has been boosting the con?tinuous demand of high speed optical interconnection inside or among data centers, high performance computers and even consumer electronics. To pursue the improved intercon?nection performance of capacity, energy efficiency and simplicity, effective approaches are demonstrated including particularly advanced digital signal processing (DSP) meth?ods. In this paper, we present a review about the enabling adaptive DSP methods for opti?cal interconnection applications, and a detailed summary of our recent and ongoing works in this field. In brief, our works focus on dealing with the specific issues for short-reach interconnection scenarios with adaptive operation, including signal-to-noise-ratio (SNR) limitation, level nonlinearity distortion, energy efficiency consideration and the de?cision precision.展开更多
Cryogenic oxide-confined vertical-cavity surface-emitting laser(VCSEL)has promising application in cryogenic optical interconnect for cryogenic computing.In this paper,we demonstrate a cryogenic 850-nm oxide-confined ...Cryogenic oxide-confined vertical-cavity surface-emitting laser(VCSEL)has promising application in cryogenic optical interconnect for cryogenic computing.In this paper,we demonstrate a cryogenic 850-nm oxide-confined VCSEL at around 4 K.The cryogenic VCSEL with an optical oxide aperture of 6.5μm in diameter can operate in single fundamental mode with a side-mode suppression-ratio of 36 dB at 3.6 K,and the fiber-coupled output power reaches 1 mW at 5 mA.The small signal modulation measurements at 298 and 292 K show the fabricated VCSEL has the potential to achieve a high modulation bandwidth at cryogenic temperature.展开更多
We describe the structure and testing of one-dimensional array parallel-optics photo-detectors with 16 photodiodes of which each diode operates up to 8 Gb/s. The single element is vertical and top illuminated 30μm-di...We describe the structure and testing of one-dimensional array parallel-optics photo-detectors with 16 photodiodes of which each diode operates up to 8 Gb/s. The single element is vertical and top illuminated 30μm-diameter silicon on insulator (Ge-on-SOI) PIN photodetector. High-quality Ge absorption layer is epitaxially grown on SO1 substrate by the ultra-high vacuum chemical vapor deposition (UHV-CVD). The photodiode exhibits a good responsivity of 0.20 A/W at a wavelength of 1550 nm. The dark current is as low as 0.36/aA at a reverse bias of 1 V, and the corresponding current density is about 51 mA/cm2. The detector with a diameter of 30 t.trn is measured at an incident light of 1.55 μm and 0.5 mW, and the 3-dB bandwidth is 7.39 GHz without bias and 13.9 GHz at a reverse bias of 3 V. The 16 devices show a good consistency.展开更多
We report a strict non-blocking four-port optical router that is used for a mesh photonic network-on-chip on a silicon-on-insulator platform.The router consists of eight silicon microring switches that are tuned by th...We report a strict non-blocking four-port optical router that is used for a mesh photonic network-on-chip on a silicon-on-insulator platform.The router consists of eight silicon microring switches that are tuned by the thermo-optic effect.For each tested rousting state,the signal-to-noise ratio of the optical router is larger than 13.8 dB at the working wavelength.The routing functionality of the device is verified.We perform 40 Gbps nonreturn to zero code data transmission on its 12 optical links.Meanwhile,data transmission using wavelength division multiplexing on eight channels in the C band(from 1525 to 1565 nm)has been adopted to increase the communication capacity.The optical router’s average energy efficiency is 25.52 fJ/bit.The rising times(10%to 90%)of the eight optical switch elements are less than 10μs and the falling times(90%-10%)are less than 20μs.展开更多
This paper reviews the recently developed optical interconnect technologies designed for scalable, low latency and high-throughput comunications within datacenters or high perforrmnce computers. The three typical arch...This paper reviews the recently developed optical interconnect technologies designed for scalable, low latency and high-throughput comunications within datacenters or high perforrmnce computers. The three typical architectures including the broadcast-and-select based Optical Shared Memory Supercomputer Interconnect System (OSMOSIS) switch, the defection routing based Data Vortex switch and the arrayed waveguide grating based Low-latency Interconnect Optical Network Switch (LIONS) switch are discussed in detail. In particular, we investigate the various Ioopback buffering technologies in LIONS and present a proof of principle testbed demonstration showing feasibility of LIONS architecture. Moreover, the performance of LIONS, Data Vortex and OSMOSIS with traditional state-of-the-art electrical switching network based on the Flattened-ButterFly (FBF) architecture in terms of throughput and latency are compared. The sinmlation based perfortmnce study shows that the latency of LIONS is almost independent of the number of input ports and does not saturate even at very high input load.展开更多
This paper analyzes the physical potential, computing performance benefi t and power consumption of optical interconnects. Compared with electrical interconnections, optical ones show undoubted advantages based on phy...This paper analyzes the physical potential, computing performance benefi t and power consumption of optical interconnects. Compared with electrical interconnections, optical ones show undoubted advantages based on physical factor analysis. At the same time, since the recent developments drive us to think about whether these optical interconnect technologies with higher bandwidth but higher cost are worthy to be deployed, the computing performance comparison is performed. To meet the increasing demand of large-scale parallel or multi-processor computing tasks, an analytic method to evaluate parallel computing performance ofinterconnect systems is proposed in this paper. Both bandwidth-limit model and full-bandwidth model are under our investigation. Speedup and effi ciency are selected to represent the parallel performance of an interconnect system. Deploying the proposed models, we depict the performance gap between the optical and electrically interconnected systems. Another investigation on power consumption of commercial products showed that if the parallel interconnections are deployed, the unit power consumption will be reduced. Therefore, from the analysis of computing influence and power dissipation, we found that parallel optical interconnect is valuable combination of high performance and low energy consumption. Considering the possible data center under construction, huge power could be saved if parallel optical interconnects technologies are used.展开更多
Optical wireless communications have been widely studied during the past decade in short-range applications, such as indoor highspeed wireless networks and interconnects in data centers and high-performance computing....Optical wireless communications have been widely studied during the past decade in short-range applications, such as indoor highspeed wireless networks and interconnects in data centers and high-performance computing. In this paper, recent developments in high-speed short-range optical wireless communications are reviewed, including visible light communications (VLCs), infrared indoor communication systems, and reconfigurable optical interconnects. The general architecture of indoor high-speed optical wireless communications is described, and the advantages and limitations of both visible and infrared based solutions are discussed. The concept of reconfigurable optical interconnects is presented, and key results are summarized. In addition, the challenges and potential future directions of short-range optical wireless communications are discussed.展开更多
Optical scattering loss coefficient of muhimode rectangular waveguide is analyzed in this work. First, the effective refrac tive index and the mode field distribution of waveguide modes are obtained using the Marcatil...Optical scattering loss coefficient of muhimode rectangular waveguide is analyzed in this work. First, the effective refrac tive index and the mode field distribution of waveguide modes are obtained using the Marcatili method. The influence on scattering loss coefficient by waveguide surface roughness is then analyzed. Finally, the mode coupling efficiency for the SMFOpticalWaveguide (SOW) structure and MMFOptical Waveguide (MOW) structure are presented. The total scatter ing loss coefficient depends on modes scattering loss coeffi cients and the mode coupling efficiency between fiber and waveguide. The simulation results show that the total scatter ing loss coefficient for the MOW structure is affected more strongly by surface roughness than that for the SOW struc ture. The total scattering loss coefficient of waveguide decreas es from 3.97 x 10^-2 dB/cm to 2.96 x 10^-4 dB/cm for the SOW structure and from 5.24 - 10^-2 dB/cm to 4.7 x 10^-4 dB/ cm for the MOW structure when surface roughness is from 300nm to 20nm and waveguide length is 100cm.展开更多
High-performance germanium(Ge)waveguide photodetectors are designed and fabricated utilizing the inductivegain-peaking technique.With the appropriate integrated inductors,the 3-dB bandwidth of photodetectors is signif...High-performance germanium(Ge)waveguide photodetectors are designed and fabricated utilizing the inductivegain-peaking technique.With the appropriate integrated inductors,the 3-dB bandwidth of photodetectors is significantly improved owing to the inductive-gain-peaking effect without any compromises to the dark current and optical responsivity.Measured 3-dB bandwidth up to 75 GHz is realized and clear open eye diagrams at 64 Gbps are observed.In this work,the relationship between the frequency response and large signal transmission characteristics on the integrated inductors of Ge waveguide photodetectors is investigated,which indicates the high-speed performance of photodetectors using the inductive-gainpeaking technique.展开更多
The vertical cavity surface emitting laser (VCSEL) arrays and VCSEL-based optical transmission modules are investigated.It includes the VCSEL's spectral characteristic,modulation characteristic,high frequency char...The vertical cavity surface emitting laser (VCSEL) arrays and VCSEL-based optical transmission modules are investigated.It includes the VCSEL's spectral characteristic,modulation characteristic,high frequency characteristic,and compatibility with microelectronic circuit.The module consists of 1×16 VCSEL array and 16-channel lasers driver with 0.35μm CMOS circuit by hybrid integration.During the test process,the module operates well at more than 2GHz in -3dB frequency bandwidth.展开更多
The monolithic integration of vertical-cavity surface-emitting lasers (VCSEL) with photodetectors is very important in the application of free-space optical interconnects.Theoretical and experimental results on the re...The monolithic integration of vertical-cavity surface-emitting lasers (VCSEL) with photodetectors is very important in the application of free-space optical interconnects.Theoretical and experimental results on the resonant-cavity-enhanced (RCE) photodetector with VCSEL Structure are presented.The compatible requirement in input mirror reflectivity between the VCSEL and the RCE detector is achieved by precisely etching the top mirror.In this way,the RCE detector with relatively high quantum efficiency and necessary optical bandwidth has been obtained.[KH8/9D]展开更多
Both the vertical cavity surface emitting diodes and detectors are fabricated by using the epitaxial wafer with resonant cavity structure.Their characteristics are analyzed.The light emitters have high spectral purity...Both the vertical cavity surface emitting diodes and detectors are fabricated by using the epitaxial wafer with resonant cavity structure.Their characteristics are analyzed.The light emitters have high spectral purity of 4 8nm and high electroluminescence intensity of 0 7mW while injection current is 50mA.A 1×16 array of surface emitting light device is tested on line by probes and then used for module.The light detectors have wavelength selectivity and space selectivity.The required difference in input mirror reflectivity between emitters and detectors can easily be achieved though varying the numbers of top DBR period by etching.展开更多
Orbital angular momentum(OAM),described by an azimuthal phase term expej lθT,has unbound orthogonal states with different topological charges l.Therefore,with the explosive growth of global communication capacity,esp...Orbital angular momentum(OAM),described by an azimuthal phase term expej lθT,has unbound orthogonal states with different topological charges l.Therefore,with the explosive growth of global communication capacity,especially for short-distance optical interconnects,light-carrying OAM has proved its great potential to improve transmission capacity and spectral efficiency in the space-division multiplexing system due to its orthogonality,security,and compatibility with other techniques.Meanwhile,100-m freespace optical interconnects become an alternative solution for the“last mile”problem and provide interbuilding communication.We experimentally demonstrate a 260-m secure optical interconnect using OAM multiplexing and 16-ary quadrature amplitude modulation(16-QAM)signals.We study the beam wandering,power fluctuation,channel cross talk,bit-error-rate performance,and link security.Additionally,we also investigate the link performance for 1-to-9 multicasting at the range of 260 m.Considering that the power distribution may be affected by atmospheric turbulence,we introduce an offline feedback process to make it flexibly controllable.展开更多
基金Supported by“863” high technology research and developmentprogram,No.863- 30 7- 1 4 - 2 (0 1 )
文摘The wavelength routing technology applied to computer interconnection networks is introduced in this paper.By analyzing the relation between wavelength and network routing,we describe a concept of wavelength used as network IP address,and propose a wavelength routing topology to extend the scale of a network and realize the scalability of the network.Moreover,a twin wavelength ring network that is being developed in our laboratory to implement and test the function of wavelength routing is presented,and the main units of the twin wavelength ring network are presented also.According to the testing results based on a single wavelength ring network,it proves that the optical interconnection technology is a perfect technology to provide enough communication bandwidth for computer network.
基金Project supported in part by the National Key Research and Development Program of China(Grant No.2021YFB2206504)the National Natural Science Foundation of China(Grant No.62235017)the China Postdoctoral Science Foundation(Grant No.2021M703125).
文摘The performance of optical interconnection has improved dramatically in recent years.Silicon-based optoelectronic heterogeneous integration is the key enabler to achieve high performance optical interconnection,which not only provides the optical gain which is absent from native Si substrates and enables complete photonic functionalities on chip,but also improves the system performance through advanced heterogeneous integrated packaging.This paper reviews recent progress of silicon-based optoelectronic heterogeneous integration in high performance optical interconnection.The research status,development trend and application of ultra-low loss optical waveguides,high-speed detectors,high-speed modulators,lasers and 2D,2.5D,3D and monolithic integration are focused on.
文摘The interconnection network is one of the key elements of distributed computing systems such as MPP (massively parallel processing) or NOWs (network of workstations).In this paper,a high speed optical interconnection data link which has been designed and implemented is presented.Using TDM (time division multiplexing),virtual parallel synchronous data transmission between the PCI buses of two computers has been achieved.The maximum data rate of the link is 1 250 Mbit/s,and the communication distance of link is more than 600 m using multi mode fibers.The design method of the high frequency electrical signals on the network interface card has been analyzed,and the efficient data transmission bandwidth of the link in different transmission modes has been tested and analyzed.
基金Supported by the National High Technology Research and Development Program of China under Grant No 2015AA016902the National Natural Science Foundation of China under Grant Nos 61435013 and 61405188the K.C.Wong Education Foundation
文摘An 8×10 GHz receiver optical sub-assembly (ROSA) consisting of an 8-channel arrayed waveguide grating (AWG) and an 8-channel PIN photodetector (PD) array is designed and fabricated based on silica hybrid integration technology. Multimode output waveguides in the silica AWG with 2% refractive index difference are used to obtain fiat-top spectra. The output waveguide facet is polished to 45° bevel to change the light propagation direction into the mesa-type PIN PD, which simplifies the packaging process. The experimentM results show that the single channel I dB bandwidth of AWG ranges from 2.12nm to 3.06nm, the ROSA responsivity ranges from 0.097 A/W to 0.158A/W, and the 3dB bandwidth is up to 11 GHz. It is promising to be applied in the eight-lane WDM transmission system in data center interconnection.
基金Supported by the National Basic Research Program of China under Grant No 2012CB933501the National Natural Science Foundation of China under Grant Nos 61307033,61274070,61137003 and 61321063
文摘A single mode hybrid Ⅲ-Ⅴ/silicon on-chip laser based on the flip-chip bonding technology for on-chip optical interconnection is demonstrated. A single mode Fabry-Perot laser structure with micro-structures on an InP ridge waveguide is designed and fabricated on an InP/AIGaInAs multiple quantum well epitaxial layer structure wafer by using i-line lithography. Then, a silicon waveguide platform including a laser mounting stage is designed and fabricated on a silicon-on-insulator substrate. The single mode laser is flip-chip bonded on the laser mounting stage. The lasing light is butt-coupling to the silicon waveguide. The laser power output from a silicon waveguide is 1.3roW, and the threshold is 37mA at room temperature and continuous wave operation.
基金Supported by the National Natural Science Foundation of China(No.61834005,61772417,61802304,61602377,61634004)Shaanxi Provincial Co-ordination Innovation Project of Science and Technology(No.2016KTZDGY02-04-02)+1 种基金Shaanxi Provincial Key R&D Plan(No.2017GY-060)Shaanxi International Science and Technology Cooperation Program(No.2018KW-006).
文摘Electric router is widely used for multi-core system to interconnect each other. However, with the increasing number of processor cores, the probability of communication conflict between processor cores increases, and the data delay increases dramatically. With the advent of optical router, the traditional electrical interconnection mode has changed to optical interconnection mode. In the packet switched optical interconnection network, the data communication mechanism consists of 3 processes: link establishment, data transmission and link termination, but the circuit-switched data transmission method greatly limits the utilization of resources. The number of micro-ring resonators in the on-chip large-scale optical interconnect network is an important parameter affecting the insertion loss. The proposed λ-route, GWOR, Crossbar structure has a large overall network insertion loss due to the use of many micro-ring resonators. How to use the least micro-ring resonator to realize non-blocking communication between multiple cores has been a research hotspot. In order to improve bandwidth and reduce access latency, an optical interconnection structure called multilevel switching optical network on chip(MSONoC) is proposed in this paper. The broadband micro-ring resonators(BMRs) are employed to reduce the number of micro-ring resonators(MRs) in the network, and the structure can provide the service of non-blocking point to point communication with the wavelength division multiplexing(WDM) technology. The results show that compared to λ-route, GWOR, Crossbar and the new topology structure, the number of micro-ring resonators of MSONoC are reduced by 95.5%, 95.5%, 87.5%, and 60% respectively. The insertion loss of the minimum link of new topology, mesh and MSONoC structure is 0.73 dB, 0.725 dB and 0.38 dB.
基金This work was supported by National Natural Science Foundation of Chi⁃na(NSFC)under Grant Nos.61935011,61875124 and 61875049.
文摘In recent years, explosively increasing data traffic has been boosting the con?tinuous demand of high speed optical interconnection inside or among data centers, high performance computers and even consumer electronics. To pursue the improved intercon?nection performance of capacity, energy efficiency and simplicity, effective approaches are demonstrated including particularly advanced digital signal processing (DSP) meth?ods. In this paper, we present a review about the enabling adaptive DSP methods for opti?cal interconnection applications, and a detailed summary of our recent and ongoing works in this field. In brief, our works focus on dealing with the specific issues for short-reach interconnection scenarios with adaptive operation, including signal-to-noise-ratio (SNR) limitation, level nonlinearity distortion, energy efficiency consideration and the de?cision precision.
基金supported by the National Natural Science Foundation of China(Nos.62275243,62075209,and 61675193)the Beijing Natural Science Foundation(No.Z200006).
文摘Cryogenic oxide-confined vertical-cavity surface-emitting laser(VCSEL)has promising application in cryogenic optical interconnect for cryogenic computing.In this paper,we demonstrate a cryogenic 850-nm oxide-confined VCSEL at around 4 K.The cryogenic VCSEL with an optical oxide aperture of 6.5μm in diameter can operate in single fundamental mode with a side-mode suppression-ratio of 36 dB at 3.6 K,and the fiber-coupled output power reaches 1 mW at 5 mA.The small signal modulation measurements at 298 and 292 K show the fabricated VCSEL has the potential to achieve a high modulation bandwidth at cryogenic temperature.
文摘We describe the structure and testing of one-dimensional array parallel-optics photo-detectors with 16 photodiodes of which each diode operates up to 8 Gb/s. The single element is vertical and top illuminated 30μm-diameter silicon on insulator (Ge-on-SOI) PIN photodetector. High-quality Ge absorption layer is epitaxially grown on SO1 substrate by the ultra-high vacuum chemical vapor deposition (UHV-CVD). The photodiode exhibits a good responsivity of 0.20 A/W at a wavelength of 1550 nm. The dark current is as low as 0.36/aA at a reverse bias of 1 V, and the corresponding current density is about 51 mA/cm2. The detector with a diameter of 30 t.trn is measured at an incident light of 1.55 μm and 0.5 mW, and the 3-dB bandwidth is 7.39 GHz without bias and 13.9 GHz at a reverse bias of 3 V. The 16 devices show a good consistency.
基金National Key Research and Development Program of China(2019YFB2203602)National Science Fund for Distinguished Young Scholars(61825504).
文摘We report a strict non-blocking four-port optical router that is used for a mesh photonic network-on-chip on a silicon-on-insulator platform.The router consists of eight silicon microring switches that are tuned by the thermo-optic effect.For each tested rousting state,the signal-to-noise ratio of the optical router is larger than 13.8 dB at the working wavelength.The routing functionality of the device is verified.We perform 40 Gbps nonreturn to zero code data transmission on its 12 optical links.Meanwhile,data transmission using wavelength division multiplexing on eight channels in the C band(from 1525 to 1565 nm)has been adopted to increase the communication capacity.The optical router’s average energy efficiency is 25.52 fJ/bit.The rising times(10%to 90%)of the eight optical switch elements are less than 10μs and the falling times(90%-10%)are less than 20μs.
基金the Department of Defense under Contract No.#H88230-08-C-0202the Google Research Awards
文摘This paper reviews the recently developed optical interconnect technologies designed for scalable, low latency and high-throughput comunications within datacenters or high perforrmnce computers. The three typical architectures including the broadcast-and-select based Optical Shared Memory Supercomputer Interconnect System (OSMOSIS) switch, the defection routing based Data Vortex switch and the arrayed waveguide grating based Low-latency Interconnect Optical Network Switch (LIONS) switch are discussed in detail. In particular, we investigate the various Ioopback buffering technologies in LIONS and present a proof of principle testbed demonstration showing feasibility of LIONS architecture. Moreover, the performance of LIONS, Data Vortex and OSMOSIS with traditional state-of-the-art electrical switching network based on the Flattened-ButterFly (FBF) architecture in terms of throughput and latency are compared. The sinmlation based perfortmnce study shows that the latency of LIONS is almost independent of the number of input ports and does not saturate even at very high input load.
基金supported in part by National 863 Program (2009AA01Z256,No.2009AA01A345)National 973 Program (2007CB310705)the NSFC (60932004),P.R.China
文摘This paper analyzes the physical potential, computing performance benefi t and power consumption of optical interconnects. Compared with electrical interconnections, optical ones show undoubted advantages based on physical factor analysis. At the same time, since the recent developments drive us to think about whether these optical interconnect technologies with higher bandwidth but higher cost are worthy to be deployed, the computing performance comparison is performed. To meet the increasing demand of large-scale parallel or multi-processor computing tasks, an analytic method to evaluate parallel computing performance ofinterconnect systems is proposed in this paper. Both bandwidth-limit model and full-bandwidth model are under our investigation. Speedup and effi ciency are selected to represent the parallel performance of an interconnect system. Deploying the proposed models, we depict the performance gap between the optical and electrically interconnected systems. Another investigation on power consumption of commercial products showed that if the parallel interconnections are deployed, the unit power consumption will be reduced. Therefore, from the analysis of computing influence and power dissipation, we found that parallel optical interconnect is valuable combination of high performance and low energy consumption. Considering the possible data center under construction, huge power could be saved if parallel optical interconnects technologies are used.
基金supported under Australian Research Council’s Discovery Early Career Researcher Award(DECRA)funding scheme(project number DE150100924)The University of Melbourne’s Early Career Researcher(ECR)funding scheme(project number 602702)the Victoria Fellowship(D2015/35025)
文摘Optical wireless communications have been widely studied during the past decade in short-range applications, such as indoor highspeed wireless networks and interconnects in data centers and high-performance computing. In this paper, recent developments in high-speed short-range optical wireless communications are reviewed, including visible light communications (VLCs), infrared indoor communication systems, and reconfigurable optical interconnects. The general architecture of indoor high-speed optical wireless communications is described, and the advantages and limitations of both visible and infrared based solutions are discussed. The concept of reconfigurable optical interconnects is presented, and key results are summarized. In addition, the challenges and potential future directions of short-range optical wireless communications are discussed.
基金supported by the Project of Shanghai Committee of Science and Technology under Grant No.10511500500ZTE Industry-Academia-Research Cooperation Funds
文摘Optical scattering loss coefficient of muhimode rectangular waveguide is analyzed in this work. First, the effective refrac tive index and the mode field distribution of waveguide modes are obtained using the Marcatili method. The influence on scattering loss coefficient by waveguide surface roughness is then analyzed. Finally, the mode coupling efficiency for the SMFOpticalWaveguide (SOW) structure and MMFOptical Waveguide (MOW) structure are presented. The total scatter ing loss coefficient depends on modes scattering loss coeffi cients and the mode coupling efficiency between fiber and waveguide. The simulation results show that the total scatter ing loss coefficient for the MOW structure is affected more strongly by surface roughness than that for the SOW struc ture. The total scattering loss coefficient of waveguide decreas es from 3.97 x 10^-2 dB/cm to 2.96 x 10^-4 dB/cm for the SOW structure and from 5.24 - 10^-2 dB/cm to 4.7 x 10^-4 dB/ cm for the MOW structure when surface roughness is from 300nm to 20nm and waveguide length is 100cm.
基金supported by the National Key Research and Development Program of China(2020YFB2206103)National Natural Science Foundation of China(61975196)Youth Innovation Promotion Association Chinese Academy of Sciences(2021111)。
文摘High-performance germanium(Ge)waveguide photodetectors are designed and fabricated utilizing the inductivegain-peaking technique.With the appropriate integrated inductors,the 3-dB bandwidth of photodetectors is significantly improved owing to the inductive-gain-peaking effect without any compromises to the dark current and optical responsivity.Measured 3-dB bandwidth up to 75 GHz is realized and clear open eye diagrams at 64 Gbps are observed.In this work,the relationship between the frequency response and large signal transmission characteristics on the integrated inductors of Ge waveguide photodetectors is investigated,which indicates the high-speed performance of photodetectors using the inductive-gainpeaking technique.
文摘The vertical cavity surface emitting laser (VCSEL) arrays and VCSEL-based optical transmission modules are investigated.It includes the VCSEL's spectral characteristic,modulation characteristic,high frequency characteristic,and compatibility with microelectronic circuit.The module consists of 1×16 VCSEL array and 16-channel lasers driver with 0.35μm CMOS circuit by hybrid integration.During the test process,the module operates well at more than 2GHz in -3dB frequency bandwidth.
文摘The monolithic integration of vertical-cavity surface-emitting lasers (VCSEL) with photodetectors is very important in the application of free-space optical interconnects.Theoretical and experimental results on the resonant-cavity-enhanced (RCE) photodetector with VCSEL Structure are presented.The compatible requirement in input mirror reflectivity between the VCSEL and the RCE detector is achieved by precisely etching the top mirror.In this way,the RCE detector with relatively high quantum efficiency and necessary optical bandwidth has been obtained.[KH8/9D]
文摘Both the vertical cavity surface emitting diodes and detectors are fabricated by using the epitaxial wafer with resonant cavity structure.Their characteristics are analyzed.The light emitters have high spectral purity of 4 8nm and high electroluminescence intensity of 0 7mW while injection current is 50mA.A 1×16 array of surface emitting light device is tested on line by probes and then used for module.The light detectors have wavelength selectivity and space selectivity.The required difference in input mirror reflectivity between emitters and detectors can easily be achieved though varying the numbers of top DBR period by etching.
基金supported by the National Natural Science Foundation of China (Grant Nos.62125503,62261160388,and 62101198)the Natural Science Foundation of Hubei Province of China (Grant Nos.2021CFB011 and 2023AFA028)+2 种基金the Key R&D Program of Hubei Province of China (Grant Nos.2020BAB001 and 2021BAA024)Shenzhen Science and Technology Program (Grant No.JCYJ20200109114018750)the Innovation Project of Optics Valley Laboratory (Grant Nos.OVL2021BG004 and OVL2023ZD004).
文摘Orbital angular momentum(OAM),described by an azimuthal phase term expej lθT,has unbound orthogonal states with different topological charges l.Therefore,with the explosive growth of global communication capacity,especially for short-distance optical interconnects,light-carrying OAM has proved its great potential to improve transmission capacity and spectral efficiency in the space-division multiplexing system due to its orthogonality,security,and compatibility with other techniques.Meanwhile,100-m freespace optical interconnects become an alternative solution for the“last mile”problem and provide interbuilding communication.We experimentally demonstrate a 260-m secure optical interconnect using OAM multiplexing and 16-ary quadrature amplitude modulation(16-QAM)signals.We study the beam wandering,power fluctuation,channel cross talk,bit-error-rate performance,and link security.Additionally,we also investigate the link performance for 1-to-9 multicasting at the range of 260 m.Considering that the power distribution may be affected by atmospheric turbulence,we introduce an offline feedback process to make it flexibly controllable.