With the development of satellite communication,in order to solve the problems of shortage of on-board resources and refinement of delay requirements to improve the communication performance of satellite optical netwo...With the development of satellite communication,in order to solve the problems of shortage of on-board resources and refinement of delay requirements to improve the communication performance of satellite optical networks,this paper proposes a bee colony optimization algorithm for routing and wavelength assignment based on directional guidance(DBCO-RWA)in satellite optical networks.In D-BCORWA,directional guidance based on relative position and link load is defined,and then the link cost function in the path search stage is established based on the directional guidance factor.Finally,feasible solutions are expanded in the global optimization stage.The wavelength utilization,communication success probability,blocking rate,communication hops and convergence characteristic are simulated.The results show that the performance of the proposed algorithm is improved compared with existing algorithms.展开更多
The major challenge in elastic optical networks is to determine the path of a connection and to allocate spectral resources on the links of this path. This problem consists of two sub-problems, routing and spectrum al...The major challenge in elastic optical networks is to determine the path of a connection and to allocate spectral resources on the links of this path. This problem consists of two sub-problems, routing and spectrum allocation. In the literature, these sub-problems are solved with a predefined order for all topology node pairs. Recent work proposes hybrid resolution algorithms based on connection demand and network state to provide a solution to these problems. However, the blocking rate of new connection requests has become problematic. In this work, we propose a hybrid routing and spectrum assignment policy to improve blocking rate of new connection requests. The proposed solution consists to change the routing policy of a pair node if the connection request is blocked. This algorithm improves the blocking rate of new connection requests.展开更多
Free Space Optical (FSO) networks, also known as optical wireless networks, have emerged as viable candidates for broadband wireless communications in the near future. The range of the potential application of FSO n...Free Space Optical (FSO) networks, also known as optical wireless networks, have emerged as viable candidates for broadband wireless communications in the near future. The range of the potential application of FSO networks is extensive, from home to satellite. However, FSO networks have not been popularized because of insufficient availability and reliability. Researchers have focused on the problems in the physical layer in order to exploit the properties of wireless optical channels. However, recent technological developments with successful results make it practical to explore the advantages of the high bandwidth. Some researchers have begun to focus on the problems of network and upper layers in FSO networks. In this survey, we classify prospective global FSO networks into three subnetworks and give an account of them. We also present state-of- the-art research and discuss what kinds of challenges exist.展开更多
Software defined optical networks (SDONs) integrate software defined technology with optical communication networks and represent the promising development trend of future optical networks. The key technologies for ...Software defined optical networks (SDONs) integrate software defined technology with optical communication networks and represent the promising development trend of future optical networks. The key technologies for SDONs include software-defined optical transmission, switching, and networking. The main features include control and transport separation, hard-ware universalization, protocol standardization, controllable optical network, and flexible optical network applications. This paper introduces software defined optical networks and its innovation environment, in terms of network architecture, protocol extension solution, experiment platform and typical applications. Batch testing has been conducted to evaluate the performance of this SDON testbed. The results show that the SDON testbed has good scalability in different sizes. Meanwhile, we notice that controller output bandwidth has great influence on lightpath setup delay.展开更多
Spatial division multiplexing enabled elastic optical networks(SDM-EONs) are the potential implementation form of future optical transport networks, because it can curve the physical limitation of achievable transmiss...Spatial division multiplexing enabled elastic optical networks(SDM-EONs) are the potential implementation form of future optical transport networks, because it can curve the physical limitation of achievable transmission capacity in single-mode fiber and single-core fiber. However, spectrum fragmentation issue becomes more serious in SDM-EONs compared with simple elastic optical networks(EONs) with single mode fiber or single core fiber. In this paper, multicore virtual concatenation(MCVC) scheme is first proposed considering inter-core crosstalk to solve the spectrum fragmentation issue in SDM-EONs. Simulation results show that the proposed MCVC scheme can achieve better performance compared with the baseline scheme, i.e., single-core virtual concatenation(SCVC) scheme, in terms of blocking probability and spectrum utilization.展开更多
Latency sensitive services have attracted much attention lately and imposedstringent requirements on the access network design. Passive optical networks (PONs) providea potential long-term solution for the underlying ...Latency sensitive services have attracted much attention lately and imposedstringent requirements on the access network design. Passive optical networks (PONs) providea potential long-term solution for the underlying transport network supporting theseservices. This paper discusses latency limitations in PON and recent progress in PONstandardization to improve latency. Experimental results of a low latency PON system arepresented as a proof of concept.展开更多
The next-generation optical network is a service oriented network,which could be delivered by utilizing the generalized multiprotocol label switching(GMPLS) based control plane to realize lots of intelligent features ...The next-generation optical network is a service oriented network,which could be delivered by utilizing the generalized multiprotocol label switching(GMPLS) based control plane to realize lots of intelligent features such as rapid provisioning,automated protection and restoration(P&R),efficient resource allocation,and support for different quality of service(QoS) requirements.In this paper,we propose a novel stateful PCE-cloud(SPC)based architecture of GMPLS optical networks for cloud services.The cloud computing technologies(e.g.virtualization and parallel computing) are applied to the construction of SPC for improving the reliability and maximizing resource utilization.The functions of SPC and GMPLS based control plane are expanded according to the features of cloud services for different QoS requirements.The architecture and detailed description of the components of SPC are provided.Different potential cooperation relationships between public stateful PCE cloud(PSPC) and region stateful PCE cloud(RSPC) are investigated.Moreover,we present the policy-enabled and constraint-based routing scheme base on the cooperation of PSPC and RSPC.Simulation results for verifying the performance of routing and control plane reliability are analyzed.展开更多
A novel routing architecture named DREAMSCAPE is presented to solve the problem of path computation in multi-layer, multi-domain and multi-constraints scenarios, which includes Group Engine (GE) and Unit Engine (UE). ...A novel routing architecture named DREAMSCAPE is presented to solve the problem of path computation in multi-layer, multi-domain and multi-constraints scenarios, which includes Group Engine (GE) and Unit Engine (UE). GE, UE and their cooperation relationship form the main feature of DREAMSCAPE, i.e. Dual Routing Engine (DRE). Based on DRE, two routing schemes are proposed, which are DRE Forward Path Computation (DRE-FPC) and Hierarchical DRE Backward Recursive PCE-based Computation (HDRE-BRPC). In order to validate various intelligent networking technologies of large-scale heterogeneous optical networks, a DRE-based transport optical networks testbed is built with 1000 GMPLS-based control nodes and 5 optical transport nodes. The two proposed routing schemes, i.e. DRE-FPC and HDRE-BRPC, are validated on the testbed, compared with traditional Hierarchical Routing (HR) scheme. Experimental results show a good performance of DREAMSCAPE.展开更多
A Mixed Line Rate(MLR)optical network is a good candidate for a core backbone network because of its ability to provide diverse line rates to effectively accommodate traffic demands with heterogeneous bandwidth requir...A Mixed Line Rate(MLR)optical network is a good candidate for a core backbone network because of its ability to provide diverse line rates to effectively accommodate traffic demands with heterogeneous bandwidth requirements.Because of the deleterious effects of physical impairments,there is a maximum transmission reach for optical signals before they have to be regenerated.Being expensive devices,regenerators are expected to be sparsely located and used in such a network,called a translucent optical network.In this paper,we consider the Grooming,Routing,and Wavelength Assignment(GRWA)problem so that the Quality of Transmission(QoT)for connections is satisfied,and the network-level performance metric of blocking probability is minimized.Cross-layer heuristics to effectively allocate the sparse regenerators in MLR networks are developed,and extensive simulation results are presented to demonstrate their effectiveness.展开更多
In this paper, we propose a mathe- matical model for long reach Passive Optical Networks (PON) planning. The model consid- ers the traffic demand, user requirements and physical constraints. It can support conven- t...In this paper, we propose a mathe- matical model for long reach Passive Optical Networks (PON) planning. The model consid- ers the traffic demand, user requirements and physical constraints. It can support conven- tional star-like topologies as well as cascade PON networks. Then a two-stage evolutional algorithm is described to solve this problem. The first stage was to find a proper splitter can- didate site set, composing the outer loop. The second stage aimed to get the optimal topology when the splitter locations were selected, com- posing the internal loop. In this algorithm, the Pr/ifer sequence is used to build up a one-to-one correspondence between a PON network configuration and a chromosome. Compared with the results obtained by the enumeration method, the proposed model and algorithm are shown to be effective and accu- rate.展开更多
Mobile free space optical networks have aroused much attention due to the ability of providing high speed connectivity over long distance using the wireless laser links,while requiring relatively high available bandwi...Mobile free space optical networks have aroused much attention due to the ability of providing high speed connectivity over long distance using the wireless laser links,while requiring relatively high available bandwidth resource and less energy consumption.However,maintaining the network with laserlinks is quite challenging due to a number of issues,such as the link fragility,the difficulty in pointingand tracking of the link,which also raises the great difficulty in the control of the network.In this paper,we present the methodology for the deployment of the mobile freespace optical networks based on our proposed OpenFlow-based control architecture.In addition,a new routing scheme is proposed and demonstrated on the testbed based on this control architecture.Delivery ratio,average delivery delay and time complexity are given to verify the performance of the OpenFlow-based control architecture.展开更多
In this paper,a new architecture of optical networks—the optical network based on server system is considered.From the point of this new architecture,the network can be modeled as a server system with three type serv...In this paper,a new architecture of optical networks—the optical network based on server system is considered.From the point of this new architecture,the network can be modeled as a server system with three type servers—the access server,the node server and the link server. The network performances such as cost,energy consume and network capacity can be affected by the capability of these three type servers.New ILP formulations are proposed to analyze the network capacity under two types of node severs,with and without wavelength converter.Computer simulations are conducted to evaluate the effectiveness of these new formulations.The study has shown that the network can achieve the same throughput under the two types of node servers and the network throughput increases when the maximum allowed variation increases.展开更多
In practical optical networks, there is often the same number of wavelengths in a fiber. But if it is not carefully designed, there will be much difference in link load among different fibers, and unnecessary waveleng...In practical optical networks, there is often the same number of wavelengths in a fiber. But if it is not carefully designed, there will be much difference in link load among different fibers, and unnecessary wavelengths will be needed. This paper investigated this load balancing issues to minimize the wavelength requirements. Both Integer Linear Programming (ILP) and heuristic algorithms were presented to solve such a problem in WDM optical networks with or without wavelength continuity constraints.展开更多
This paper researched the traffic of optical networks in time-space complexity,proposed a novel traf-fic model for complex optical networks based on traffic grooming,designed a traffic generator GTS(gener-ator based o...This paper researched the traffic of optical networks in time-space complexity,proposed a novel traf-fic model for complex optical networks based on traffic grooming,designed a traffic generator GTS(gener-ator based on time and space)with 'centralized+distributed' idea,and then made a simulation in Clanguage.Experiments results show that GTS can produce the virtual network topology which can changedynamically with the characteristic of scaling-free network.GTS can also groom the different traffic andtrigger them under real-time or scheduling mechanisms,generating different optical connections.Thistraffic model is convenient for the simulation of optical networks considering the traffic complexity.展开更多
Due to the vulnerability of fibers in optical networks, physical- layer attacks targeting photon splitting, such as eavesdrop- ping, can potentially lead to large information and revenue loss. To enhance the existing ...Due to the vulnerability of fibers in optical networks, physical- layer attacks targeting photon splitting, such as eavesdrop- ping, can potentially lead to large information and revenue loss. To enhance the existing security approaches of optical networks, a new promising technology, quantum key distribu- tion (QKD), can securely encrypt services in optical networks, which has been a hotspot of research in recent years for its characteristic that can let clients know whether infomlation transmission has been eavesdropped or not. In this paper, we apply QKD to provide secret keys for optical networks and then introduce the architecture of QKD based optical net- work. As for the secret keys generated by QKD in optical net- works, we propose a re-transmission mechanism by analyzing the security risks in QKD-based optical networks. Numerical results indicate that the proposed re-transmission mechanism can provide strong protection degree with enhanced attack protection. Finally, we illustrated some future challenges in QKD-based optical networks.展开更多
This paper proposes k-regular and k-connected(k&k) structure against multifaults in ultra-high capacity optical networks.Theoretical results show that pre-configured k&k structure can reach the lower bound on ...This paper proposes k-regular and k-connected(k&k) structure against multifaults in ultra-high capacity optical networks.Theoretical results show that pre-configured k&k structure can reach the lower bound on logical redundancy.The switching time of k&k protection structure is as quickly as ringbased protection in SDH network.It is the optimal protection structure in ultra-high capacity optical networks against multi-faults.We develop the linear programming model for k&k structure and propose a construction method for k&k structure design.Simulations are conducted for spare spectrum resources effi ciency of the pre-confi gured k&k structure under multi-faults on representative COST239 and NSFnet topologies.Numerical results show that the spare spectrum resources efficiency of k&k structure can reach the lower bound on logical redundancy in static networks.And it can largely improve spare spectrum resources effi ciency compared with p-cycles based protection structure without reducing protection effi ciency under dynamic traffi cs.展开更多
With the rise of cloud computing in recent years, a large number of streaming media has yielded an exponential growth in network traffic. With the now present 5G and future 6G, the development of the Internet of Thing...With the rise of cloud computing in recent years, a large number of streaming media has yielded an exponential growth in network traffic. With the now present 5G and future 6G, the development of the Internet of Things (IoT), social networks, video on demand, and mobile multimedia platforms, the backbone network is bound to bear more traffic. The transmission capacity of Single Core Fiber (SCFs) may be limited in the future and Spatial Division Multiplexing (SDM) leveraging multi-core fibers promises to be one of the solutions for the future. Currently, Elastic optical networks (EONs) with multi-core fibers (MCFs) are a kind of SDM-enabled EONs (SDM-EON) used to enhance the capacity of transmission. The resource assignment in MCFs, however, will be subject to Inter-Core Crosstalk (IC-XT), hence, reducing the effectiveness of transmission. This research highlights the routing, modulation level, and spectrum assignment (RMLSA) problems with anycast traffic mode in SDM-EON. A multipath routing scheme is used to reduce the blocking rate of anycast traffic in SDM-EON with the limit of inter-core crosstalk. Hence, an integer linear programming (ILP) problem is formulated and a heuristic algorithm is proposed. Two core-assignment strategies: First-Fit (FF) and Random-Fit (RF) are used and their performance is evaluated through simulations. The simulation results show that the multipath routing method is better than the single-path routing method in terms of blocking ratio and spectrum utilization ratio. Moreover, the FF is better than the RF in low traffic load in terms of blocking ratio (BR), and the opposite in high traffic load. The FF is better than the RF in terms of a spectrum utilization ratio. In an anycast protection problem, the proposed algorithm has a lower BR than previous works.展开更多
This paper reported the design and implementation of a bit rate adaptive Optical Electronic Optical(O/E/O)transponder accomplishing almost full data rate transparency up to 2.5 Gb/s with 3R(Reamplifying,Reshaping and ...This paper reported the design and implementation of a bit rate adaptive Optical Electronic Optical(O/E/O)transponder accomplishing almost full data rate transparency up to 2.5 Gb/s with 3R(Reamplifying,Reshaping and Retiming)processing in electronic domain.Based on the chipsets performing clock recovery in several continuous bit rate ranges,a clock and data regenerating circuit self adaptive to the bit rate of input signal was developed.Key design issues were presented,laying stress on the functional building blocks and scheme for the bit rate adaptive retiming circuit.The experimental results show a good scalability performance.展开更多
In the internet protocol(IP) over multi-granular optical switch network (IP/MG-OXC), the network node is a typical multilayer switch comprising several layers, the IP packet switching (PXC) layer, wavelength swi...In the internet protocol(IP) over multi-granular optical switch network (IP/MG-OXC), the network node is a typical multilayer switch comprising several layers, the IP packet switching (PXC) layer, wavelength switching (WXC) layer and fiber switching (FXC) layer. This network is capable of both IP layer grooming and wavelength grooming in a hierarchical manner. Resource provisioning in the multi-granular network paradigm is called hierarchical grooming problem. An integer linear programming (ILP) model is proposed to formulate the problem. An iterative heuristic approach is developed for solving the problem in large networks. Case study shows that IP/MG-OXC network is much more extendible and can significantly save the overall network cost as compared with IP over wavelength division multiplexing network.展开更多
Dynamic bandwidth allocation(DBA) is an open and hot topic in the Ethernet passive optical network(EPON) ,which is regarded as one of the best choices for next-generation access networks. However,most proposed DBA...Dynamic bandwidth allocation(DBA) is an open and hot topic in the Ethernet passive optical network(EPON) ,which is regarded as one of the best choices for next-generation access networks. However,most proposed DBA schemes ignore the quality of service(QoS) guarantee on maximum delay and delay jitter for the real-time traffic and the downstream bandwidth utilization under light upstream load in EPON. In this paper,a new DBA scheme,QoS guaranteed adaptive downstream bandwidth utilization(QoS-ADBU),is proposed. This scheme can provide better QoS assurance by determining the maximum transmission cycle time according to the maximum acceptable packet delay and delay jitter for real-time traffic. Besides,the downstream utilization can also be improved by adapting the polling frequency to downstream traffic load.展开更多
基金supported in part by the National Key Research and Development Program of China under Grant 2021YFB2900604in part by the National Natural Science Foundation of China(NSFC)under Grant U22B2033,61975234,61875230。
文摘With the development of satellite communication,in order to solve the problems of shortage of on-board resources and refinement of delay requirements to improve the communication performance of satellite optical networks,this paper proposes a bee colony optimization algorithm for routing and wavelength assignment based on directional guidance(DBCO-RWA)in satellite optical networks.In D-BCORWA,directional guidance based on relative position and link load is defined,and then the link cost function in the path search stage is established based on the directional guidance factor.Finally,feasible solutions are expanded in the global optimization stage.The wavelength utilization,communication success probability,blocking rate,communication hops and convergence characteristic are simulated.The results show that the performance of the proposed algorithm is improved compared with existing algorithms.
文摘The major challenge in elastic optical networks is to determine the path of a connection and to allocate spectral resources on the links of this path. This problem consists of two sub-problems, routing and spectrum allocation. In the literature, these sub-problems are solved with a predefined order for all topology node pairs. Recent work proposes hybrid resolution algorithms based on connection demand and network state to provide a solution to these problems. However, the blocking rate of new connection requests has become problematic. In this work, we propose a hybrid routing and spectrum assignment policy to improve blocking rate of new connection requests. The proposed solution consists to change the routing policy of a pair node if the connection request is blocked. This algorithm improves the blocking rate of new connection requests.
基金This work is supported in part by the US National Science Foundation under Grants CNS-1320664, and by the Wireless Engineering Research and Education Center (WEREC) at Auburn University, Aubur, AL, USA.
文摘Free Space Optical (FSO) networks, also known as optical wireless networks, have emerged as viable candidates for broadband wireless communications in the near future. The range of the potential application of FSO networks is extensive, from home to satellite. However, FSO networks have not been popularized because of insufficient availability and reliability. Researchers have focused on the problems in the physical layer in order to exploit the properties of wireless optical channels. However, recent technological developments with successful results make it practical to explore the advantages of the high bandwidth. Some researchers have begun to focus on the problems of network and upper layers in FSO networks. In this survey, we classify prospective global FSO networks into three subnetworks and give an account of them. We also present state-of- the-art research and discuss what kinds of challenges exist.
基金supported by ZTE Industry-Academia-Research Cooperation Funds under Grant No.Surrey-Ref-9953
文摘Software defined optical networks (SDONs) integrate software defined technology with optical communication networks and represent the promising development trend of future optical networks. The key technologies for SDONs include software-defined optical transmission, switching, and networking. The main features include control and transport separation, hard-ware universalization, protocol standardization, controllable optical network, and flexible optical network applications. This paper introduces software defined optical networks and its innovation environment, in terms of network architecture, protocol extension solution, experiment platform and typical applications. Batch testing has been conducted to evaluate the performance of this SDON testbed. The results show that the SDON testbed has good scalability in different sizes. Meanwhile, we notice that controller output bandwidth has great influence on lightpath setup delay.
基金supported in part by NSFC project (61571058, 61601052)
文摘Spatial division multiplexing enabled elastic optical networks(SDM-EONs) are the potential implementation form of future optical transport networks, because it can curve the physical limitation of achievable transmission capacity in single-mode fiber and single-core fiber. However, spectrum fragmentation issue becomes more serious in SDM-EONs compared with simple elastic optical networks(EONs) with single mode fiber or single core fiber. In this paper, multicore virtual concatenation(MCVC) scheme is first proposed considering inter-core crosstalk to solve the spectrum fragmentation issue in SDM-EONs. Simulation results show that the proposed MCVC scheme can achieve better performance compared with the baseline scheme, i.e., single-core virtual concatenation(SCVC) scheme, in terms of blocking probability and spectrum utilization.
文摘Latency sensitive services have attracted much attention lately and imposedstringent requirements on the access network design. Passive optical networks (PONs) providea potential long-term solution for the underlying transport network supporting theseservices. This paper discusses latency limitations in PON and recent progress in PONstandardization to improve latency. Experimental results of a low latency PON system arepresented as a proof of concept.
基金supported by National Natural Science Foundation of China(No.61571061)Innovative Research Fund of Beijing University of Posts and Telecommunications (2015RC16)
文摘The next-generation optical network is a service oriented network,which could be delivered by utilizing the generalized multiprotocol label switching(GMPLS) based control plane to realize lots of intelligent features such as rapid provisioning,automated protection and restoration(P&R),efficient resource allocation,and support for different quality of service(QoS) requirements.In this paper,we propose a novel stateful PCE-cloud(SPC)based architecture of GMPLS optical networks for cloud services.The cloud computing technologies(e.g.virtualization and parallel computing) are applied to the construction of SPC for improving the reliability and maximizing resource utilization.The functions of SPC and GMPLS based control plane are expanded according to the features of cloud services for different QoS requirements.The architecture and detailed description of the components of SPC are provided.Different potential cooperation relationships between public stateful PCE cloud(PSPC) and region stateful PCE cloud(RSPC) are investigated.Moreover,we present the policy-enabled and constraint-based routing scheme base on the cooperation of PSPC and RSPC.Simulation results for verifying the performance of routing and control plane reliability are analyzed.
基金supported in part by National Key Basic Research Program of China (973 program) under Grant No.2010CB328204National High Technology Research and Development Program of China (863 program) under Grant No.2009AA01Z255+3 种基金National Natural Science Foundation of China under Grant No. 60932004RFDP Project under Grant No.20090005110013111 Project of China under Grant No.B07005China Fundamental Research Funds for the Central Universities
文摘A novel routing architecture named DREAMSCAPE is presented to solve the problem of path computation in multi-layer, multi-domain and multi-constraints scenarios, which includes Group Engine (GE) and Unit Engine (UE). GE, UE and their cooperation relationship form the main feature of DREAMSCAPE, i.e. Dual Routing Engine (DRE). Based on DRE, two routing schemes are proposed, which are DRE Forward Path Computation (DRE-FPC) and Hierarchical DRE Backward Recursive PCE-based Computation (HDRE-BRPC). In order to validate various intelligent networking technologies of large-scale heterogeneous optical networks, a DRE-based transport optical networks testbed is built with 1000 GMPLS-based control nodes and 5 optical transport nodes. The two proposed routing schemes, i.e. DRE-FPC and HDRE-BRPC, are validated on the testbed, compared with traditional Hierarchical Routing (HR) scheme. Experimental results show a good performance of DREAMSCAPE.
基金supported in part by National Science Foundation (NSF) under Grants No. CNS-0915795 and No.CNS-0916890
文摘A Mixed Line Rate(MLR)optical network is a good candidate for a core backbone network because of its ability to provide diverse line rates to effectively accommodate traffic demands with heterogeneous bandwidth requirements.Because of the deleterious effects of physical impairments,there is a maximum transmission reach for optical signals before they have to be regenerated.Being expensive devices,regenerators are expected to be sparsely located and used in such a network,called a translucent optical network.In this paper,we consider the Grooming,Routing,and Wavelength Assignment(GRWA)problem so that the Quality of Transmission(QoT)for connections is satisfied,and the network-level performance metric of blocking probability is minimized.Cross-layer heuristics to effectively allocate the sparse regenerators in MLR networks are developed,and extensive simulation results are presented to demonstrate their effectiveness.
基金supported by National High Technology Research and Development Program of China under Grant No.2011AA01A104National 973 Program underGrant No. 2013CB329204National Natural Science Foundation of China under Grant No.61100206
文摘In this paper, we propose a mathe- matical model for long reach Passive Optical Networks (PON) planning. The model consid- ers the traffic demand, user requirements and physical constraints. It can support conven- tional star-like topologies as well as cascade PON networks. Then a two-stage evolutional algorithm is described to solve this problem. The first stage was to find a proper splitter can- didate site set, composing the outer loop. The second stage aimed to get the optimal topology when the splitter locations were selected, com- posing the internal loop. In this algorithm, the Pr/ifer sequence is used to build up a one-to-one correspondence between a PON network configuration and a chromosome. Compared with the results obtained by the enumeration method, the proposed model and algorithm are shown to be effective and accu- rate.
基金supported in part by 863 program(2012AA011301)973 program (2010CB328204)+3 种基金NSFC project(61271189, 61201154)RFDP Project(20120005120019)the Fundamental Research Funds for the Central Universities(2013RC1201)Fund of State Key Laboratory of Information Photonics and Optical Communications(BUPT)
文摘Mobile free space optical networks have aroused much attention due to the ability of providing high speed connectivity over long distance using the wireless laser links,while requiring relatively high available bandwidth resource and less energy consumption.However,maintaining the network with laserlinks is quite challenging due to a number of issues,such as the link fragility,the difficulty in pointingand tracking of the link,which also raises the great difficulty in the control of the network.In this paper,we present the methodology for the deployment of the mobile freespace optical networks based on our proposed OpenFlow-based control architecture.In addition,a new routing scheme is proposed and demonstrated on the testbed based on this control architecture.Delivery ratio,average delivery delay and time complexity are given to verify the performance of the OpenFlow-based control architecture.
基金supported by China Post-doctoral Science Foundation funded project(20070420013)Open Fund of National Laboratory on Local Fiber-Optic Communication Networks & Advanced optical Communication Systems,(Pe-king University),PRChinaGuangxi Science Foundation(0731003)
文摘In this paper,a new architecture of optical networks—the optical network based on server system is considered.From the point of this new architecture,the network can be modeled as a server system with three type servers—the access server,the node server and the link server. The network performances such as cost,energy consume and network capacity can be affected by the capability of these three type servers.New ILP formulations are proposed to analyze the network capacity under two types of node severs,with and without wavelength converter.Computer simulations are conducted to evaluate the effectiveness of these new formulations.The study has shown that the network can achieve the same throughput under the two types of node servers and the network throughput increases when the maximum allowed variation increases.
文摘In practical optical networks, there is often the same number of wavelengths in a fiber. But if it is not carefully designed, there will be much difference in link load among different fibers, and unnecessary wavelengths will be needed. This paper investigated this load balancing issues to minimize the wavelength requirements. Both Integer Linear Programming (ILP) and heuristic algorithms were presented to solve such a problem in WDM optical networks with or without wavelength continuity constraints.
基金Supported by the High Technology Research and Development Programme of China (No. 2008AA01A328)the National Natural Science Foundation of China (No. 60772022)+2 种基金the Program for New Century Excellent Talents in University (No. NCET-05-0112)the Program for Changjiang Scholars and Innovative Research Team in University of MOE, China (No. IRT0609)111 Project (No. B07005)
文摘This paper researched the traffic of optical networks in time-space complexity,proposed a novel traf-fic model for complex optical networks based on traffic grooming,designed a traffic generator GTS(gener-ator based on time and space)with 'centralized+distributed' idea,and then made a simulation in Clanguage.Experiments results show that GTS can produce the virtual network topology which can changedynamically with the characteristic of scaling-free network.GTS can also groom the different traffic andtrigger them under real-time or scheduling mechanisms,generating different optical connections.Thistraffic model is convenient for the simulation of optical networks considering the traffic complexity.
基金supported in part by NSFC project(Grant No.61571058and 61601052)Science and Technology Project of State Grid Corporation of China:The Key Technology Research of Elastic Optical Network(Grant No.526800160006)+1 种基金China Postdoctoral Science Foundation Project(2016M600970)ZTE Industry-Academia-Research Cooperation Funds
文摘Due to the vulnerability of fibers in optical networks, physical- layer attacks targeting photon splitting, such as eavesdrop- ping, can potentially lead to large information and revenue loss. To enhance the existing security approaches of optical networks, a new promising technology, quantum key distribu- tion (QKD), can securely encrypt services in optical networks, which has been a hotspot of research in recent years for its characteristic that can let clients know whether infomlation transmission has been eavesdropped or not. In this paper, we apply QKD to provide secret keys for optical networks and then introduce the architecture of QKD based optical net- work. As for the secret keys generated by QKD in optical net- works, we propose a re-transmission mechanism by analyzing the security risks in QKD-based optical networks. Numerical results indicate that the proposed re-transmission mechanism can provide strong protection degree with enhanced attack protection. Finally, we illustrated some future challenges in QKD-based optical networks.
基金supported by the Major State Basic Research Development Program of China(973 Program)(Nos.2010CB328202,2010CB328204,and 2012CB315604)the HiTech Research and Development Program of China(863 Program)(Nos.2012AA01Z301,and 2012AA011302)+2 种基金the National Natural Science Foundation of China(No.60702005)the Beijing Nova Program(No.2011065)the Fundamental Research Funds for the Central Universities
文摘This paper proposes k-regular and k-connected(k&k) structure against multifaults in ultra-high capacity optical networks.Theoretical results show that pre-configured k&k structure can reach the lower bound on logical redundancy.The switching time of k&k protection structure is as quickly as ringbased protection in SDH network.It is the optimal protection structure in ultra-high capacity optical networks against multi-faults.We develop the linear programming model for k&k structure and propose a construction method for k&k structure design.Simulations are conducted for spare spectrum resources effi ciency of the pre-confi gured k&k structure under multi-faults on representative COST239 and NSFnet topologies.Numerical results show that the spare spectrum resources efficiency of k&k structure can reach the lower bound on logical redundancy in static networks.And it can largely improve spare spectrum resources effi ciency compared with p-cycles based protection structure without reducing protection effi ciency under dynamic traffi cs.
文摘With the rise of cloud computing in recent years, a large number of streaming media has yielded an exponential growth in network traffic. With the now present 5G and future 6G, the development of the Internet of Things (IoT), social networks, video on demand, and mobile multimedia platforms, the backbone network is bound to bear more traffic. The transmission capacity of Single Core Fiber (SCFs) may be limited in the future and Spatial Division Multiplexing (SDM) leveraging multi-core fibers promises to be one of the solutions for the future. Currently, Elastic optical networks (EONs) with multi-core fibers (MCFs) are a kind of SDM-enabled EONs (SDM-EON) used to enhance the capacity of transmission. The resource assignment in MCFs, however, will be subject to Inter-Core Crosstalk (IC-XT), hence, reducing the effectiveness of transmission. This research highlights the routing, modulation level, and spectrum assignment (RMLSA) problems with anycast traffic mode in SDM-EON. A multipath routing scheme is used to reduce the blocking rate of anycast traffic in SDM-EON with the limit of inter-core crosstalk. Hence, an integer linear programming (ILP) problem is formulated and a heuristic algorithm is proposed. Two core-assignment strategies: First-Fit (FF) and Random-Fit (RF) are used and their performance is evaluated through simulations. The simulation results show that the multipath routing method is better than the single-path routing method in terms of blocking ratio and spectrum utilization ratio. Moreover, the FF is better than the RF in low traffic load in terms of blocking ratio (BR), and the opposite in high traffic load. The FF is better than the RF in terms of a spectrum utilization ratio. In an anycast protection problem, the proposed algorithm has a lower BR than previous works.
基金National High Project Fund(863)(No.2001AA121073)
文摘This paper reported the design and implementation of a bit rate adaptive Optical Electronic Optical(O/E/O)transponder accomplishing almost full data rate transparency up to 2.5 Gb/s with 3R(Reamplifying,Reshaping and Retiming)processing in electronic domain.Based on the chipsets performing clock recovery in several continuous bit rate ranges,a clock and data regenerating circuit self adaptive to the bit rate of input signal was developed.Key design issues were presented,laying stress on the functional building blocks and scheme for the bit rate adaptive retiming circuit.The experimental results show a good scalability performance.
基金Sponsored by Agency for Singapore Technology and Advance Research(RGM01/16)
文摘In the internet protocol(IP) over multi-granular optical switch network (IP/MG-OXC), the network node is a typical multilayer switch comprising several layers, the IP packet switching (PXC) layer, wavelength switching (WXC) layer and fiber switching (FXC) layer. This network is capable of both IP layer grooming and wavelength grooming in a hierarchical manner. Resource provisioning in the multi-granular network paradigm is called hierarchical grooming problem. An integer linear programming (ILP) model is proposed to formulate the problem. An iterative heuristic approach is developed for solving the problem in large networks. Case study shows that IP/MG-OXC network is much more extendible and can significantly save the overall network cost as compared with IP over wavelength division multiplexing network.
基金supported by the Tianjin Enterprise Innovation Fund under Grant No. 08ZXCXGX17500
文摘Dynamic bandwidth allocation(DBA) is an open and hot topic in the Ethernet passive optical network(EPON) ,which is regarded as one of the best choices for next-generation access networks. However,most proposed DBA schemes ignore the quality of service(QoS) guarantee on maximum delay and delay jitter for the real-time traffic and the downstream bandwidth utilization under light upstream load in EPON. In this paper,a new DBA scheme,QoS guaranteed adaptive downstream bandwidth utilization(QoS-ADBU),is proposed. This scheme can provide better QoS assurance by determining the maximum transmission cycle time according to the maximum acceptable packet delay and delay jitter for real-time traffic. Besides,the downstream utilization can also be improved by adapting the polling frequency to downstream traffic load.