In future optical transport networks,lightpath performance analysis is of great practical significance for fully automated management.In general,the quality of transmission(QoT)of lightpaths,measured by optical qualit...In future optical transport networks,lightpath performance analysis is of great practical significance for fully automated management.In general,the quality of transmission(QoT)of lightpaths,measured by optical quality factor or optical signal-to-noise ratio,has a complex time-varying process,along with the interactions of the other lightpath state parameters(LSPs),such as transmit power,chromatic dispersion,polarization mode dispersion.Current studies are mostly focused on lightpath QoT estimation,but ignoring lightpath-level data analytics.In this case,our article proposes a novel lightpath performance analysis method considering recurrence plot(RP)and cross recurrence plot(CRP).Firstly,we give a detailed interpretation on the recurrence patterns of LSPs via a qualitative 2-D RP representation and its quantitative measure.It can potentially enable the accurate and fast lightpath failure detection with a low computational burden.On the other hand,CRP is devoted to modeling the relationships between lightpath QoT and LSPs,and the correlation degree is determined by a geometric mean of multiple indexes of cross recurrence quantification analysis.From the view of application,such CRP analysis can provide the effective knowledge sharing to guarantee more credible QoT prediction.Extensive experiments on a real-world optical network dataset have clearly demonstrated the effectiveness of our proposal.展开更多
Networking is the core area of national strategic emerging industry development of information industry; it will play an important role in national economic development. Currently, it is hot issue of global research a...Networking is the core area of national strategic emerging industry development of information industry; it will play an important role in national economic development. Currently, it is hot issue of global research at home and abroad regardless of the mention of its development of a national strategic level, it is called the third wave of the world information industry following the computer, and internet.展开更多
为提升网络的传输效率和传输质量,研究基于软件定义光传送网(Software Optical Transport Network,SoTN)技术和第五代移动通信技术(5th Generation Mobile Communication Technology,5G)的传输组网技术。首先分析了5G传输网端到端架构...为提升网络的传输效率和传输质量,研究基于软件定义光传送网(Software Optical Transport Network,SoTN)技术和第五代移动通信技术(5th Generation Mobile Communication Technology,5G)的传输组网技术。首先分析了5G传输网端到端架构存在的优势及不足,其次采用SOTN技术和5G网络切片技术设计了一种传输组网方案,最后进行实验分析。测试结果表明,该传输组网技术具有较好的应用效果,数据包的传输成功率均在90.00%以上,并且端到端的最大时延为16.11ms,能够保证网络的传输效果。展开更多
The fifth generation(5G) of mobile communications are facing big challenges, due to the proliferation of diversified terminals and unprecedented services such as internet of things(IoT), high-definition videos, virtua...The fifth generation(5G) of mobile communications are facing big challenges, due to the proliferation of diversified terminals and unprecedented services such as internet of things(IoT), high-definition videos, virtual/augmented reality(VR/AR). To accommodate massive connections and astonish mobile traffic, an efficient 5G transport network is required. Optical transport network has been demonstrated to play an important role for carrying 5G radio signals. This paper focuses on the future challenges, recent studies and potential solutions for the 5G flexible optical transport networks with the performances on large-capacity, low-latency and high-efficiency. In addition, we discuss the technology development trends of the 5G transport networks in terms of the optical device, optical transport system, optical switching, and optical networking. Finally, we conclude the paper with the improvement of network intelligence enabled by these technologies to deterministic content delivery over 5G optical transport networks.展开更多
Due to the increasing variety of information and services carried by optical networks, the survivability of network becomes an important problem in current research. The fault location of OTN is of great significance ...Due to the increasing variety of information and services carried by optical networks, the survivability of network becomes an important problem in current research. The fault location of OTN is of great significance for studying the survivability of optical networks. Firstly, a three-channel network model is established and analyzing common alarm data, the fault monitoring points and common fault points are carried out. The artificial neural network is introduced into the fault location field of OTN and it is used to judge whether the possible fault point exists or not. But one of the obvious limitations of general neural networks is that they receive a fixedsize vector as input and produce a fixed-size vector as the output. Not only that, these models is even fixed for mapping operations (for example, the number of layers in the model). The difference between the recurrent neural network and general neural networks is that it can operate on the sequence. In spite of the fact that the gradient disappears and the gradient explodes still exist in the neural network, the method of gradient shearing or weight regularization is adopted to solve this problem, and choose the LSTM (long-short term memory networks) to locate the fault. The output uses the concept of membership degree of fuzzy theory to express the possible fault point with the probability from 0 to 1. Priority is given to the treatment of fault points with high probability. The concept of F-Measure is also introduced, and the positioning effect is measured by using location time, MSE and F-Measure. The experiment shows that both LSTM and BP neural network can locate the fault of optical transport network well, but the overall effect of LSTM is better. The localization time of LSTM is shorter than that of BP neural network, and the F1-score of LSTM can reach 0.961566888396156 after 45 iterations, which meets the accuracy and real-time requirements of fault location. Therefore, it has good application prospect and practical value to introduce neural network into the fault location field of optical transport network.展开更多
A layered network model for optical transport networks is proposed in this paper,which involves Internet Protocol(IP) ,Synchronous Digital Hierarchy(SDH) and Wavelength Division Mul-tiplexing(WDM) layers. The strategy...A layered network model for optical transport networks is proposed in this paper,which involves Internet Protocol(IP) ,Synchronous Digital Hierarchy(SDH) and Wavelength Division Mul-tiplexing(WDM) layers. The strategy of Dynamic Joint Routing and Resource Allocation(DJRRA) and its algorithm description are also presented for the proposed layered network model. DJRRA op-timizes the bandwidth usage of interface links between different layers and the logic links inside all layers. The simulation results show that DJRRA can reduce the blocking probability and increase network throughput effectively,which is in contrast to the classical separate sequential routing and resource allocation solutions.展开更多
The Packet Transport Network(PTN) technology includes Transport Multi-Protocol Label Switching(T-MPLS) and Provider Backbone Transport(PBT).T-MPLS is the simplified and reformed Multi-Protocol Label Switching(MPLS).It...The Packet Transport Network(PTN) technology includes Transport Multi-Protocol Label Switching(T-MPLS) and Provider Backbone Transport(PBT).T-MPLS is the simplified and reformed Multi-Protocol Label Switching(MPLS).It drops MPLS’connectionless features and its transport-unrelated forwarding processing,but adds the network model of the transport layer,protection switching and Operation,Administration and Maintenance(OAM) functionality.PBT enforces both OAM and protection functions,adds Time Division Multiplexing(TDM) business simulation and clock functions,and strengthens multi-service support capability.But PBT has no functions of traditional Ethernet address learning,address broadcast and Spanning Tree Protocol(STP).Both T-MPLS and PBT can well satisfy the requirements of packet transport.Compared to PBT,T-MPLS has better OAM functions.展开更多
现阶段在信息化时代的不断发展下,对于通信技术的高度重视已经成为世界各国不约而同的首要任务,作为通信技术的基石,传输网络提供的高可靠大带宽传输电路是各大运营商宽带网络稳定高强度运行的基础,是运营商各类业务有序发展的前提。因...现阶段在信息化时代的不断发展下,对于通信技术的高度重视已经成为世界各国不约而同的首要任务,作为通信技术的基石,传输网络提供的高可靠大带宽传输电路是各大运营商宽带网络稳定高强度运行的基础,是运营商各类业务有序发展的前提。因此,高速OTN传输平台作为输出核心,要在Nx100 G的技术已经有较为稳定的发展的基础上进行能力提升。本文对于400 G OTN关键技术进行研究,并探讨400 G OTN在大型运营商省内主干传输网络的规划部署与建议。展开更多
An Extrinsic Fabry-Perot Interferometric (EFPI) fiber optical sensor system is an online testing system for the gas density. The system achieves the measurement of gas density information mainly by demodulating the ca...An Extrinsic Fabry-Perot Interferometric (EFPI) fiber optical sensor system is an online testing system for the gas density. The system achieves the measurement of gas density information mainly by demodulating the cavity length of EF- PI fiber optical sensor. There are many ways to achieve the demodulation of the cavity length. For shortcomings of the big intensity demodulation error and complex structure of phase demodulation, this paper proposes that BP neural net-work is used to locate the special peak points in normalized interference spectrum and combining the advantages of the unimodal and bimodal measurement achieves the demodulation of the cavity length. Through online simulation and actual measurement, the results show that the peak positioning technology based on BP neural network can not only achieve high-precision demodulation of the cavity length, but also achieve an absolute measurement of cavity length in large dynamic range.展开更多
在电力通信传输系统中,综合不同的运行工况、科学配置电力设备,并合理应用光传送网(Optical Transport Network,OTN)技术可以改善电力通信传输网络的整体性能。基于此,在智能电网建设发展中,主要简述OTN技术,讨论OTN技术在电力通信传输...在电力通信传输系统中,综合不同的运行工况、科学配置电力设备,并合理应用光传送网(Optical Transport Network,OTN)技术可以改善电力通信传输网络的整体性能。基于此,在智能电网建设发展中,主要简述OTN技术,讨论OTN技术在电力通信传输网络中的问题,基于色散、波长等因素,提出OTN技术的网络结构和拓扑、网络路由和光放大器系统优化措施。展开更多
As new generation mobile networks, 3G networks focus on data services and integrate voice, data and multimedia services. However, traditional Optical Transport Networks (OTNs) cannot meet the requirements of 3G networ...As new generation mobile networks, 3G networks focus on data services and integrate voice, data and multimedia services. However, traditional Optical Transport Networks (OTNs) cannot meet the requirements of 3G networks anymore, because of their complicated configuration, low bandwidth efficiency, high cost, and bad network and service scalability. The emerging of Multi-Service Transport Platform (MSTP), Wavelength Division Multiplexing (WDM), and Automatically Switched Optical Network (ASON) technologies for optical fiber communications makes up for these weaknesses. The leading solution to 3G access transport networks is the MSTP technology based on Synchronous Digital Hierarchy (SDH), while that to 3G core transport network is ASON+WDM.展开更多
Cognitive optical network is the intermediate to combine artificial intelligence technology with network,and also the important network technology to promote network intelligence level constantly.In the paper,it analy...Cognitive optical network is the intermediate to combine artificial intelligence technology with network,and also the important network technology to promote network intelligence level constantly.In the paper,it analyzes the cognitive optical network structure with the application of artificial intelligence technology by starting from the basic conditions of cognitive network and cognitive optional network on the basis of fully understanding the connotation of cognitive network and cognitive optical network,and explores its self-governance functions,so as to better realize the self-optimization and self-configuration of network.展开更多
基金supported in part by the Science and Technology Project of Hebei Education Department,Grant ZD2021088in part by the S&T Major Project of the Science and Technology Ministry of China,Grant 2017YFE0135700。
文摘In future optical transport networks,lightpath performance analysis is of great practical significance for fully automated management.In general,the quality of transmission(QoT)of lightpaths,measured by optical quality factor or optical signal-to-noise ratio,has a complex time-varying process,along with the interactions of the other lightpath state parameters(LSPs),such as transmit power,chromatic dispersion,polarization mode dispersion.Current studies are mostly focused on lightpath QoT estimation,but ignoring lightpath-level data analytics.In this case,our article proposes a novel lightpath performance analysis method considering recurrence plot(RP)and cross recurrence plot(CRP).Firstly,we give a detailed interpretation on the recurrence patterns of LSPs via a qualitative 2-D RP representation and its quantitative measure.It can potentially enable the accurate and fast lightpath failure detection with a low computational burden.On the other hand,CRP is devoted to modeling the relationships between lightpath QoT and LSPs,and the correlation degree is determined by a geometric mean of multiple indexes of cross recurrence quantification analysis.From the view of application,such CRP analysis can provide the effective knowledge sharing to guarantee more credible QoT prediction.Extensive experiments on a real-world optical network dataset have clearly demonstrated the effectiveness of our proposal.
文摘Networking is the core area of national strategic emerging industry development of information industry; it will play an important role in national economic development. Currently, it is hot issue of global research at home and abroad regardless of the mention of its development of a national strategic level, it is called the third wave of the world information industry following the computer, and internet.
文摘为提升网络的传输效率和传输质量,研究基于软件定义光传送网(Software Optical Transport Network,SoTN)技术和第五代移动通信技术(5th Generation Mobile Communication Technology,5G)的传输组网技术。首先分析了5G传输网端到端架构存在的优势及不足,其次采用SOTN技术和5G网络切片技术设计了一种传输组网方案,最后进行实验分析。测试结果表明,该传输组网技术具有较好的应用效果,数据包的传输成功率均在90.00%以上,并且端到端的最大时延为16.11ms,能够保证网络的传输效果。
基金supported by the National Nature Science Foundation of China Projects(No.61871051,61771073)the Nature Science Foundation of Beijing project(No.4192039)
文摘The fifth generation(5G) of mobile communications are facing big challenges, due to the proliferation of diversified terminals and unprecedented services such as internet of things(IoT), high-definition videos, virtual/augmented reality(VR/AR). To accommodate massive connections and astonish mobile traffic, an efficient 5G transport network is required. Optical transport network has been demonstrated to play an important role for carrying 5G radio signals. This paper focuses on the future challenges, recent studies and potential solutions for the 5G flexible optical transport networks with the performances on large-capacity, low-latency and high-efficiency. In addition, we discuss the technology development trends of the 5G transport networks in terms of the optical device, optical transport system, optical switching, and optical networking. Finally, we conclude the paper with the improvement of network intelligence enabled by these technologies to deterministic content delivery over 5G optical transport networks.
文摘Due to the increasing variety of information and services carried by optical networks, the survivability of network becomes an important problem in current research. The fault location of OTN is of great significance for studying the survivability of optical networks. Firstly, a three-channel network model is established and analyzing common alarm data, the fault monitoring points and common fault points are carried out. The artificial neural network is introduced into the fault location field of OTN and it is used to judge whether the possible fault point exists or not. But one of the obvious limitations of general neural networks is that they receive a fixedsize vector as input and produce a fixed-size vector as the output. Not only that, these models is even fixed for mapping operations (for example, the number of layers in the model). The difference between the recurrent neural network and general neural networks is that it can operate on the sequence. In spite of the fact that the gradient disappears and the gradient explodes still exist in the neural network, the method of gradient shearing or weight regularization is adopted to solve this problem, and choose the LSTM (long-short term memory networks) to locate the fault. The output uses the concept of membership degree of fuzzy theory to express the possible fault point with the probability from 0 to 1. Priority is given to the treatment of fault points with high probability. The concept of F-Measure is also introduced, and the positioning effect is measured by using location time, MSE and F-Measure. The experiment shows that both LSTM and BP neural network can locate the fault of optical transport network well, but the overall effect of LSTM is better. The localization time of LSTM is shorter than that of BP neural network, and the F1-score of LSTM can reach 0.961566888396156 after 45 iterations, which meets the accuracy and real-time requirements of fault location. Therefore, it has good application prospect and practical value to introduce neural network into the fault location field of optical transport network.
基金the Science & Technology Foundation of Huawei Ltd. (No.YJCB2005040SW)the Creative Foundation of Xidian University (No.05030).
文摘A layered network model for optical transport networks is proposed in this paper,which involves Internet Protocol(IP) ,Synchronous Digital Hierarchy(SDH) and Wavelength Division Mul-tiplexing(WDM) layers. The strategy of Dynamic Joint Routing and Resource Allocation(DJRRA) and its algorithm description are also presented for the proposed layered network model. DJRRA op-timizes the bandwidth usage of interface links between different layers and the logic links inside all layers. The simulation results show that DJRRA can reduce the blocking probability and increase network throughput effectively,which is in contrast to the classical separate sequential routing and resource allocation solutions.
文摘The Packet Transport Network(PTN) technology includes Transport Multi-Protocol Label Switching(T-MPLS) and Provider Backbone Transport(PBT).T-MPLS is the simplified and reformed Multi-Protocol Label Switching(MPLS).It drops MPLS’connectionless features and its transport-unrelated forwarding processing,but adds the network model of the transport layer,protection switching and Operation,Administration and Maintenance(OAM) functionality.PBT enforces both OAM and protection functions,adds Time Division Multiplexing(TDM) business simulation and clock functions,and strengthens multi-service support capability.But PBT has no functions of traditional Ethernet address learning,address broadcast and Spanning Tree Protocol(STP).Both T-MPLS and PBT can well satisfy the requirements of packet transport.Compared to PBT,T-MPLS has better OAM functions.
文摘现阶段在信息化时代的不断发展下,对于通信技术的高度重视已经成为世界各国不约而同的首要任务,作为通信技术的基石,传输网络提供的高可靠大带宽传输电路是各大运营商宽带网络稳定高强度运行的基础,是运营商各类业务有序发展的前提。因此,高速OTN传输平台作为输出核心,要在Nx100 G的技术已经有较为稳定的发展的基础上进行能力提升。本文对于400 G OTN关键技术进行研究,并探讨400 G OTN在大型运营商省内主干传输网络的规划部署与建议。
文摘An Extrinsic Fabry-Perot Interferometric (EFPI) fiber optical sensor system is an online testing system for the gas density. The system achieves the measurement of gas density information mainly by demodulating the cavity length of EF- PI fiber optical sensor. There are many ways to achieve the demodulation of the cavity length. For shortcomings of the big intensity demodulation error and complex structure of phase demodulation, this paper proposes that BP neural net-work is used to locate the special peak points in normalized interference spectrum and combining the advantages of the unimodal and bimodal measurement achieves the demodulation of the cavity length. Through online simulation and actual measurement, the results show that the peak positioning technology based on BP neural network can not only achieve high-precision demodulation of the cavity length, but also achieve an absolute measurement of cavity length in large dynamic range.
文摘在电力通信传输系统中,综合不同的运行工况、科学配置电力设备,并合理应用光传送网(Optical Transport Network,OTN)技术可以改善电力通信传输网络的整体性能。基于此,在智能电网建设发展中,主要简述OTN技术,讨论OTN技术在电力通信传输网络中的问题,基于色散、波长等因素,提出OTN技术的网络结构和拓扑、网络路由和光放大器系统优化措施。
文摘As new generation mobile networks, 3G networks focus on data services and integrate voice, data and multimedia services. However, traditional Optical Transport Networks (OTNs) cannot meet the requirements of 3G networks anymore, because of their complicated configuration, low bandwidth efficiency, high cost, and bad network and service scalability. The emerging of Multi-Service Transport Platform (MSTP), Wavelength Division Multiplexing (WDM), and Automatically Switched Optical Network (ASON) technologies for optical fiber communications makes up for these weaknesses. The leading solution to 3G access transport networks is the MSTP technology based on Synchronous Digital Hierarchy (SDH), while that to 3G core transport network is ASON+WDM.
文摘Cognitive optical network is the intermediate to combine artificial intelligence technology with network,and also the important network technology to promote network intelligence level constantly.In the paper,it analyzes the cognitive optical network structure with the application of artificial intelligence technology by starting from the basic conditions of cognitive network and cognitive optional network on the basis of fully understanding the connotation of cognitive network and cognitive optical network,and explores its self-governance functions,so as to better realize the self-optimization and self-configuration of network.