This study presents a single-class and multi-class instance segmentation approach applied to ancient Palmyrene inscriptions,employing two state-of-the-art deep learning algorithms,namely YOLOv8 and Roboflow 3.0.The go...This study presents a single-class and multi-class instance segmentation approach applied to ancient Palmyrene inscriptions,employing two state-of-the-art deep learning algorithms,namely YOLOv8 and Roboflow 3.0.The goal is to contribute to the preservation and understanding of historical texts,showcasing the potential of modern deep learning methods in archaeological research.Our research culminates in several key findings and scientific contributions.We comprehensively compare the performance of YOLOv8 and Roboflow 3.0 in the context of Palmyrene character segmentation—this comparative analysis mainly focuses on the strengths and weaknesses of each algorithm in this context.We also created and annotated an extensive dataset of Palmyrene inscriptions,a crucial resource for further research in the field.The dataset serves for training and evaluating the segmentation models.We employ comparative evaluation metrics to quantitatively assess the segmentation results,ensuring the reliability and reproducibility of our findings and we present custom visualization tools for predicted segmentation masks.Our study advances the state of the art in semi-automatic reading of Palmyrene inscriptions and establishes a benchmark for future research.The availability of the Palmyrene dataset and the insights into algorithm performance contribute to the broader understanding of historical text analysis.展开更多
This paper presents a handwritten document recognition system based on the convolutional neural network technique.In today’s world,handwritten document recognition is rapidly attaining the attention of researchers du...This paper presents a handwritten document recognition system based on the convolutional neural network technique.In today’s world,handwritten document recognition is rapidly attaining the attention of researchers due to its promising behavior as assisting technology for visually impaired users.This technology is also helpful for the automatic data entry system.In the proposed systemprepared a dataset of English language handwritten character images.The proposed system has been trained for the large set of sample data and tested on the sample images of user-defined handwritten documents.In this research,multiple experiments get very worthy recognition results.The proposed systemwill first performimage pre-processing stages to prepare data for training using a convolutional neural network.After this processing,the input document is segmented using line,word and character segmentation.The proposed system get the accuracy during the character segmentation up to 86%.Then these segmented characters are sent to a convolutional neural network for their recognition.The recognition and segmentation technique proposed in this paper is providing the most acceptable accurate results on a given dataset.The proposed work approaches to the accuracy of the result during convolutional neural network training up to 93%,and for validation that accuracy slightly decreases with 90.42%.展开更多
为解决复杂背景中准确地进行文字分割的问题,提出了一种应用stroke滤波器进行文本分割的新方法。首先进行stroke滤波器的合理设计,并应用所设计的stroke滤波器来判别文本的彩色极性,得到初次分割的二值图。然后进行基于区域生长的文字...为解决复杂背景中准确地进行文字分割的问题,提出了一种应用stroke滤波器进行文本分割的新方法。首先进行stroke滤波器的合理设计,并应用所设计的stroke滤波器来判别文本的彩色极性,得到初次分割的二值图。然后进行基于区域生长的文字分割。最后,应用OCR(optical character recognition)模块提高文本分割的整体性能。将提出的算法与其他算法进行了比较,结果表明,所提算法更为有效。展开更多
基金The results and knowledge included herein have been obtained owing to support from the following institutional grant.Internal grant agency of the Faculty of Economics and Management,Czech University of Life Sciences Prague,Grant No.2023A0004-“Text Segmentation Methods of Historical Alphabets in OCR Development”.https://iga.pef.czu.cz/.Funds were granted to T.Novák,A.Hamplová,O.Svojše,and A.Veselýfrom the author team.
文摘This study presents a single-class and multi-class instance segmentation approach applied to ancient Palmyrene inscriptions,employing two state-of-the-art deep learning algorithms,namely YOLOv8 and Roboflow 3.0.The goal is to contribute to the preservation and understanding of historical texts,showcasing the potential of modern deep learning methods in archaeological research.Our research culminates in several key findings and scientific contributions.We comprehensively compare the performance of YOLOv8 and Roboflow 3.0 in the context of Palmyrene character segmentation—this comparative analysis mainly focuses on the strengths and weaknesses of each algorithm in this context.We also created and annotated an extensive dataset of Palmyrene inscriptions,a crucial resource for further research in the field.The dataset serves for training and evaluating the segmentation models.We employ comparative evaluation metrics to quantitatively assess the segmentation results,ensuring the reliability and reproducibility of our findings and we present custom visualization tools for predicted segmentation masks.Our study advances the state of the art in semi-automatic reading of Palmyrene inscriptions and establishes a benchmark for future research.The availability of the Palmyrene dataset and the insights into algorithm performance contribute to the broader understanding of historical text analysis.
文摘This paper presents a handwritten document recognition system based on the convolutional neural network technique.In today’s world,handwritten document recognition is rapidly attaining the attention of researchers due to its promising behavior as assisting technology for visually impaired users.This technology is also helpful for the automatic data entry system.In the proposed systemprepared a dataset of English language handwritten character images.The proposed system has been trained for the large set of sample data and tested on the sample images of user-defined handwritten documents.In this research,multiple experiments get very worthy recognition results.The proposed systemwill first performimage pre-processing stages to prepare data for training using a convolutional neural network.After this processing,the input document is segmented using line,word and character segmentation.The proposed system get the accuracy during the character segmentation up to 86%.Then these segmented characters are sent to a convolutional neural network for their recognition.The recognition and segmentation technique proposed in this paper is providing the most acceptable accurate results on a given dataset.The proposed work approaches to the accuracy of the result during convolutional neural network training up to 93%,and for validation that accuracy slightly decreases with 90.42%.
文摘为解决复杂背景中准确地进行文字分割的问题,提出了一种应用stroke滤波器进行文本分割的新方法。首先进行stroke滤波器的合理设计,并应用所设计的stroke滤波器来判别文本的彩色极性,得到初次分割的二值图。然后进行基于区域生长的文字分割。最后,应用OCR(optical character recognition)模块提高文本分割的整体性能。将提出的算法与其他算法进行了比较,结果表明,所提算法更为有效。