In this paper,we report a simulation study on the performance enhancement of Praseodymium doped silica fiber amplifiers(PDFAs)in O-band(1270-1350 nm)in terms of small signal gain,power conversion efficiency(PCE),and o...In this paper,we report a simulation study on the performance enhancement of Praseodymium doped silica fiber amplifiers(PDFAs)in O-band(1270-1350 nm)in terms of small signal gain,power conversion efficiency(PCE),and output optical power by employing bidirectional pumping.The PDFA performance is examined by optimizing the length of Praseodymium doped silica fiber(PDF),its mode-field diameter(MFD)and the concentration of Pr^(3+).A small-signal peak gain of 56.4 dB,power conversion efficiency(PCE)of 47%,and output optical power of around 1.6 W(32 dBm)is observed at optimized parameters for input signal wavelength of 1310 nm.Minimum noise figure(NF)of 4.1 dB is observed at input signal wavelength of 1310 nm.Moreover,the effect of varying the pump wavelength and pump power on output optical power of the amplifier and amplified spontaneous emission(ASE)noise is also investigated,respectively.Finally,the impact of ion-ion interaction(up-conversion effect)on small-signal gain of the amplifier is also studied by considering different values of up-conversion coefficient.展开更多
The configuration of the novel three-stage L-band erbium-doped fiber amplifier with very large and flat gain and very low noise figure presented in this paper uses the forward ASE (amplified spontaneous emission) from...The configuration of the novel three-stage L-band erbium-doped fiber amplifier with very large and flat gain and very low noise figure presented in this paper uses the forward ASE (amplified spontaneous emission) from the first section of the EDF (erbium-doped fiber) and the backward ASE from the third section of the EDF (both serve as the secondary pump sources of energy) to pump the second EDF. To improve the pump efficiency, the power of the pump is split into two parts (with a ratio of e.g. 2:7). The characteristics of this L-band EDFA are studied on the basis of the Giles Model with ASE.展开更多
Bidirectional EDFAs(Bi-EDFAs)featuring bidirectional signal input are theoreticallystudied.Gain and noise performances of Bi-EDFAs are analysed numerically and comparedwith that of other optical amplifiers.Application...Bidirectional EDFAs(Bi-EDFAs)featuring bidirectional signal input are theoreticallystudied.Gain and noise performances of Bi-EDFAs are analysed numerically and comparedwith that of other optical amplifiers.Applications of Bi-EDFAs in fiber networks and otherfields are considered.展开更多
Optical channel pre-emphasis equalization is experimentally researched for a 270 km 40 × 40 Gbit/s wavelength division multiplexing (WDM) transmission system with three Erbium-doped fiber amplifiers (ED- FAs)...Optical channel pre-emphasis equalization is experimentally researched for a 270 km 40 × 40 Gbit/s wavelength division multiplexing (WDM) transmission system with three Erbium-doped fiber amplifiers (ED- FAs) and Raman amplifiers concatenated as booster amplifier. The channel imbalance of the overall system changes with different sets of power launched into EDFAs. By appropriately choosing the power input to concatenated EDFAs, the output spectrum of 40 channel signal can be equalized to the most extent. The merit of benefit can be around 5.5 dB by this pre-emphasis equalization. The requirement for the gain equalizer is therefore greatly released. Then the gain imbalance of the overall system and the power imbalance of 40 channels are compared and the two almost matches, but the significant difference lies on some channels. Finally, the pump power into Raman amplifier is also optimized, and another 1.3 dB improvement of channel equaliza- tion can be further achieved.展开更多
Targeting the huge unused bandwidth(BW)of modem telecommunication networks,Bi/Er co-doped silica optical fibers(BEDFs)have been proposed and developed for ultra-broadband,high-gain optical amplifiers covering the ...Targeting the huge unused bandwidth(BW)of modem telecommunication networks,Bi/Er co-doped silica optical fibers(BEDFs)have been proposed and developed for ultra-broadband,high-gain optical amplifiers covering the 1150-1700 nm wavelength range.Ultrabroadband luminescence has been demonstrated in both BEDFs and bismuth/erbium/ytterbium co-doped optical fibers(BEYDFs)fabricated with the modified chemical vapor deposition(MCVD)and in situ doping techniques.Several novel and sophisticated techniques have been developed for the fabrication and characterization of the new active fibers.For controlling the performance of the active fibers,post-treatment processes using high temperature,γ-radiation,and laser light have been introduced.Although many fundamental scientific and technological issues and challenges still remain,several photonic applications,such as fiber sensing,fiber gratings,fiber amplification,fiber lasers,etc.,have already been demonstrated.展开更多
文摘In this paper,we report a simulation study on the performance enhancement of Praseodymium doped silica fiber amplifiers(PDFAs)in O-band(1270-1350 nm)in terms of small signal gain,power conversion efficiency(PCE),and output optical power by employing bidirectional pumping.The PDFA performance is examined by optimizing the length of Praseodymium doped silica fiber(PDF),its mode-field diameter(MFD)and the concentration of Pr^(3+).A small-signal peak gain of 56.4 dB,power conversion efficiency(PCE)of 47%,and output optical power of around 1.6 W(32 dBm)is observed at optimized parameters for input signal wavelength of 1310 nm.Minimum noise figure(NF)of 4.1 dB is observed at input signal wavelength of 1310 nm.Moreover,the effect of varying the pump wavelength and pump power on output optical power of the amplifier and amplified spontaneous emission(ASE)noise is also investigated,respectively.Finally,the impact of ion-ion interaction(up-conversion effect)on small-signal gain of the amplifier is also studied by considering different values of up-conversion coefficient.
文摘The configuration of the novel three-stage L-band erbium-doped fiber amplifier with very large and flat gain and very low noise figure presented in this paper uses the forward ASE (amplified spontaneous emission) from the first section of the EDF (erbium-doped fiber) and the backward ASE from the third section of the EDF (both serve as the secondary pump sources of energy) to pump the second EDF. To improve the pump efficiency, the power of the pump is split into two parts (with a ratio of e.g. 2:7). The characteristics of this L-band EDFA are studied on the basis of the Giles Model with ASE.
基金a major project of the 8th Five-Year Plan of China.
文摘Bidirectional EDFAs(Bi-EDFAs)featuring bidirectional signal input are theoreticallystudied.Gain and noise performances of Bi-EDFAs are analysed numerically and comparedwith that of other optical amplifiers.Applications of Bi-EDFAs in fiber networks and otherfields are considered.
基金the National Natural Science Foundation of China (60777024)
文摘Optical channel pre-emphasis equalization is experimentally researched for a 270 km 40 × 40 Gbit/s wavelength division multiplexing (WDM) transmission system with three Erbium-doped fiber amplifiers (ED- FAs) and Raman amplifiers concatenated as booster amplifier. The channel imbalance of the overall system changes with different sets of power launched into EDFAs. By appropriately choosing the power input to concatenated EDFAs, the output spectrum of 40 channel signal can be equalized to the most extent. The merit of benefit can be around 5.5 dB by this pre-emphasis equalization. The requirement for the gain equalizer is therefore greatly released. Then the gain imbalance of the overall system and the power imbalance of 40 channels are compared and the two almost matches, but the significant difference lies on some channels. Finally, the pump power into Raman amplifier is also optimized, and another 1.3 dB improvement of channel equaliza- tion can be further achieved.
基金Authors are thankful for the support of National Natural Science Foundation of China (Grant Nos. 61520106014, 61405014 and 61377096), Key Laboratory of In-fiber Integrated Optics, Ministry Education of China, State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunica- tions) (No. IPOC2016ZT07), Key Laboratory of Optical Fiber Sensing & Communications (Education Ministry of China), Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province (No. GD201702) and Science and Technology Commission of Shanghai Municipality, China (Nos. SKLSFO2015-01 and 15220721500). We also wishes to express our thanks to all members of Photonics & Optical Communications at UNSW, Prof. John Canning and Dr. Kevin Cook at University of Sydney, Prof. Graham Town at Macquarie University, and Prof. Tingyun Wang at Shanghai University for their assistance and contributions.
文摘Targeting the huge unused bandwidth(BW)of modem telecommunication networks,Bi/Er co-doped silica optical fibers(BEDFs)have been proposed and developed for ultra-broadband,high-gain optical amplifiers covering the 1150-1700 nm wavelength range.Ultrabroadband luminescence has been demonstrated in both BEDFs and bismuth/erbium/ytterbium co-doped optical fibers(BEYDFs)fabricated with the modified chemical vapor deposition(MCVD)and in situ doping techniques.Several novel and sophisticated techniques have been developed for the fabrication and characterization of the new active fibers.For controlling the performance of the active fibers,post-treatment processes using high temperature,γ-radiation,and laser light have been introduced.Although many fundamental scientific and technological issues and challenges still remain,several photonic applications,such as fiber sensing,fiber gratings,fiber amplification,fiber lasers,etc.,have already been demonstrated.
文摘报道了一种利用频率为几千赫兹的高频 CO2激光脉冲的热冲击效应制作长周期光纤光栅的新技术。实验中,作者首次发现这种新型的长周期光纤光栅具有一些独特的光学特性,比如弯曲特性和横向负载特性等,这主要是因为用高频 CO2激光脉冲写成的长周期光纤光栅的横截面折射率分布不对称所致。基于这种新型长周期光纤光栅,设计了一种用于减小掺铒光纤放大器噪声系数的 ASE 噪声滤波器和平坦掺铒光纤放大器增益谱的增益均衡器,此外,还利用这种新型长周期光纤光栅独特的弯曲和压力特性,研究设计了两种用于动态平坦掺铒光纤放大器增益谱的动态增益均衡器。