We propose a compensation technique based on pulse reference for intensity-modulated optical fiber sensors that can compensate the power fluctuation of the light source, the change of optical components transmission l...We propose a compensation technique based on pulse reference for intensity-modulated optical fiber sensors that can compensate the power fluctuation of the light source, the change of optical components transmission loss, and the coupler splitting ratio. The theoretical principle of this compensation technique is analyzed and a temperature sensor based on fiber coating-covered optical microfiber is carried out to demonstrate the compensation effect. The system noise is measured to be 0.0005 dB with the temperature sensitivity reaching -0.063 dB/℃, and the output drift is 0.006 dB in 2 h at room temperature. The output shows a slight variation (0.0061 dB) when the light source and the common liKht path suffer a 3 dB attenuation fluctuation.展开更多
A simple all optical system for stopping and storing light pulses is demonstrated. The system consists of an erbium-doped fiber amplifier (EDFA), a semiconductor optical amplifier (SOA), and a fiber ring resonator...A simple all optical system for stopping and storing light pulses is demonstrated. The system consists of an erbium-doped fiber amplifier (EDFA), a semiconductor optical amplifier (SOA), and a fiber ring resonator. The results show that the multisoliton generation with a free spectrum range of 2.4 nm and a pulse spectral width of 0.96 nm is achieved. The memory time of 15 min and the maximum soliton output power of 5.94 dBm are noted, respectively. This means that light pulses can be trapped, i.e., stopped optically within the fiber ring resonator.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61505258 and 11574397)the Scientific Research Project of the National University of Defense Technology(No.JC15-11-02)
文摘We propose a compensation technique based on pulse reference for intensity-modulated optical fiber sensors that can compensate the power fluctuation of the light source, the change of optical components transmission loss, and the coupler splitting ratio. The theoretical principle of this compensation technique is analyzed and a temperature sensor based on fiber coating-covered optical microfiber is carried out to demonstrate the compensation effect. The system noise is measured to be 0.0005 dB with the temperature sensitivity reaching -0.063 dB/℃, and the output drift is 0.006 dB in 2 h at room temperature. The output shows a slight variation (0.0061 dB) when the light source and the common liKht path suffer a 3 dB attenuation fluctuation.
文摘A simple all optical system for stopping and storing light pulses is demonstrated. The system consists of an erbium-doped fiber amplifier (EDFA), a semiconductor optical amplifier (SOA), and a fiber ring resonator. The results show that the multisoliton generation with a free spectrum range of 2.4 nm and a pulse spectral width of 0.96 nm is achieved. The memory time of 15 min and the maximum soliton output power of 5.94 dBm are noted, respectively. This means that light pulses can be trapped, i.e., stopped optically within the fiber ring resonator.