A novel fiber optic sensor based on optical composite oxygen-sensitive film was developed for determination of 2,4-dichlorophenol(DCP).The optical composite oxygen-sensitive film consists of tris(2,2’-bipyridyl)dichl...A novel fiber optic sensor based on optical composite oxygen-sensitive film was developed for determination of 2,4-dichlorophenol(DCP).The optical composite oxygen-sensitive film consists of tris(2,2’-bipyridyl)dichloro ruthenium(II)hexahydrate(Ru(bpy)3Cl2)as the fluorescence indicator and iron(III)tetrasulfophthalocyanine(Fe(III)PcTs)as bionic enzyme.A lock-in amplifier was used for detecting the lifetime of the composite oxygen-sensitive film by measuring the phase delay of the sensor head.The different variables affecting the sensor performance were evaluated and optimized.Under the optimal conditions(i e,pH 6.0,25℃,Fe(III)PcTs concentration of 5.0×10^-5 mol/L),the linear detection range,detection limit and response time of the fiber optic sensor are 3.0×10^-7-9.0×10^-5 mol/L,4.8×10^-8 mol/L(S/N=3),and 220 s,respectively.The sensor displays high selectivity,good repeatability and stability,which have good potentials in analyzing DCP concentration in practical water samples.展开更多
A type of combined optical fiber interferometric acoustic emission sensor is proposed. The sensor can be independent on the laser source and make light interference by matching the lengths of two arms,so it can be use...A type of combined optical fiber interferometric acoustic emission sensor is proposed. The sensor can be independent on the laser source and make light interference by matching the lengths of two arms,so it can be used to monitor the health of large structure. Theoretical analyses indicate that the system can be equivalent to the Michelson interferometer with two optical fiber loop reflectors,and its sensitivity has been remarkably increased because of the decrease of the losses of light energy. PZT is powered by DC regulator to control the operating point of the system,so the system can accurately detect feeble vibration which is generated by ultrasonic waves propagating on the surface of solid. The amplitude and the frequency of feeble vibration signal are obtained by detecting the output light intensity of interferometer and using Fourier transform technique. The results indicate that the system can be used to detect the acoustic emission signals by the frequency characteristics.展开更多
A low fineness fiber optic Fabry-Perot interferometric displacement sensor has been developed and tested.A 0.005 nm displacement resolution is obtained by using He-Ne laser with a high performance ,photodetectors with...A low fineness fiber optic Fabry-Perot interferometric displacement sensor has been developed and tested.A 0.005 nm displacement resolution is obtained by using He-Ne laser with a high performance ,photodetectors with low noise ,low drift operational amplifiers,6-pole Butterworth filters and perfect digital signal processing circuits.展开更多
Phase-sensitive optical time-domain reflectometry(Φ-OTDR)has attracted numerous attention due to its superior performance in detecting the weak perturbations along the fiber.Relying on the ultra-sensitivity of light ...Phase-sensitive optical time-domain reflectometry(Φ-OTDR)has attracted numerous attention due to its superior performance in detecting the weak perturbations along the fiber.Relying on the ultra-sensitivity of light phase to the tiny deformation of optical fiber,Φ-OTDR has been treated as a powerful technique with a wide range of applications.It is fundamental to extract the phase of scattering light wave accurately and the methods include coherent detection,I/Q demodulation,3 by 3 coupler,dual probe pulses,and so on.Meanwhile,researchers have also made great efforts to improve the performance ofΦ-OTDR.The frequency response range,the measurement accuracy,the sensing distance,the spatial resolution,and the accuracy of event discrimination,all have been enhanced by various techniques.Furthermore,lots of researches on the applications in various kinds of fields have been carried out,where certain modifications and techniques have been developed.Therefore,Φ-OTDR remains as a booming technique in both researches and applications.展开更多
A new fi ber optic sensor based on the oxidation of 2,4-dichlorophenol(DCP) catalyzed by iron(II) phthalocyanine(Fe(II)Pc) was developed for the determination of DCP. The optical oxygen sensing fi lm containin...A new fi ber optic sensor based on the oxidation of 2,4-dichlorophenol(DCP) catalyzed by iron(II) phthalocyanine(Fe(II)Pc) was developed for the determination of DCP. The optical oxygen sensing fi lm containing fl uorescence indicator Ru(bpy)3Cl2 was used to detect the consumption of oxygen in solution. Moreover, a lock-in amplifier was used to determine the lifetime of the sensor head by detecting its phase delay change. The results reveal that the sensor has a linear detection range of 1.0×10^-6- 9.0×10^-5 mol/L and a response time of 5 min. The sensor also has high selectivity, good repeatability and stability. It can be used effectively to determine DCP concentration in real samples.展开更多
The security of civil engineering is an important task due to the economic, social and environmental significance. Compared with conventional sensors, the optical fiber sensors have their unique characteristics.Being ...The security of civil engineering is an important task due to the economic, social and environmental significance. Compared with conventional sensors, the optical fiber sensors have their unique characteristics.Being durable, stable and insensitive to external perturbations,they are particular interesting for the long-term monitoring of civil structures.Focus is on absolute measurement optical fiber sensors, which are emerging from the monitoring large structural, including SOFO system, F-P optical fiber sensors, and fiber Bragg grating sensors. The principle, characteristic and application of these three kinds of optical fiber sensors are described together with their future prospects.展开更多
An ultrasonic sensitivity-improved fiber-optic Fabry-Perot interferometer (FPI) is proposed and employed for ultra- sonic imaging of seismic physical models (SPMs). The FPI comprises a flexible ultra-thin gold fil...An ultrasonic sensitivity-improved fiber-optic Fabry-Perot interferometer (FPI) is proposed and employed for ultra- sonic imaging of seismic physical models (SPMs). The FPI comprises a flexible ultra-thin gold film and the end face of a graded-index multimode fiber (MMF), both of which are enclosed in a ceramic tube. The MMF in a specified length can collimate the diverged light beam and compensate for the light loss inside the air cavity, leading to an increased spectral fringe visibility and thus a steeper spectral slope. By using the spectral sideband filtering technique, the collimated FP1 shows an improved ultrasonic response. Moreover, two-dimensional images of two SPMs are achieved in air by recon- structing the pulse-echo signals through using the time-of-flight approach. The proposed sensor with easy fabrication and compact size can be a good candidate for high-sensitivity and high-precision nondestructive testing of SPMs.展开更多
Fiber optic sensor has been widely used as a structural health monitoring device by either embedding into or surface bonding onto the structures. The strain of optic fiber induced by the host material is strongly depe...Fiber optic sensor has been widely used as a structural health monitoring device by either embedding into or surface bonding onto the structures. The strain of optic fiber induced by the host material is strongly dependent on the bonding characteristics which include the protective coating, adhesive layer and the length of bonding. The strains between the fiber optics and host structure are not exact the same. The existence of the protective coating and adhesive layer would affect the strain measured by the surface bonding optic sensor. The analytical expression of the strain in the optic fiber induced by the host material was presented. The results were validated by the finite element method. The theoretical predictions reveal that the strain in the optical fiber is lower than the strain of host material. Parametric study shows that a long bonding length and high modulus of protective coating would increase the percentage of strain transferring into the optical fiber. Experiments were conducted by using Mach-Zehnder interferometer to measure the strain of the surface bonding optic fiber induced by the host structure. Good agreements were observed in comparison with the experimental results and theoretical predictions.展开更多
The method for measuring the strain of an object using an optical fiber and a frequency modulation(FM) coupled cavity semiconductor laser is proposed.This method uses the coherent FM heterodyne principle of the Michel...The method for measuring the strain of an object using an optical fiber and a frequency modulation(FM) coupled cavity semiconductor laser is proposed.This method uses the coherent FM heterodyne principle of the Michelson interferometer and can avoid the π/2 nonreciprocal phase bias and phase shifting problem existing in general fiber optic interferential sensors, the maximum detection range is limited by the coherent length of the semiconductor laser and its relative factor.展开更多
In order to improve the multiplexing capability of the optical sensors based on the lower interferential optic fiber sensing technology and the white light fiber-optic Mach-Zehnder interferometer,reflective ladder top...In order to improve the multiplexing capability of the optical sensors based on the lower interferential optic fiber sensing technology and the white light fiber-optic Mach-Zehnder interferometer,reflective ladder topology network ( RLT) with tailored formula was proposed. The topology network consists of 6 rungs sensing elements linked by 5 couplers. Two cases with different choices of couplers were contrasted: one is equal coupling ratio,and the other is tailored coupling ratio. Through the simulation of these two cases,the detailed multiplexing capability was analyzed,and accordingly the experiments were also carried out. The simulation results showed that,the tailored formula enhances the multiplexing capability of the structure. In the first case, the maximum number of sensors which can be multiplexed is 8,and in the other case is 12 fiber optic sensors. The experimental results have a good agreement with numerical simulation results. Thus,it is considered expedient to incorporate RLT into large-scale building,grounds,bridges,dams,tunnels,highways and perimeter security.展开更多
An optical fiber extrinsic Fabry-Perot interferometer (EFPI) is designed and fabricated for refractive index (RI) sensing. To test the RI of liquid, the following two different methods are adopted: the wavelength...An optical fiber extrinsic Fabry-Perot interferometer (EFPI) is designed and fabricated for refractive index (RI) sensing. To test the RI of liquid, the following two different methods are adopted: the wavelength tracking method and the Fourier-transform white-light interferometry (FTWLI). The sensitivities of sensors with cavity lengths of 288.1 and 358.5 μm are 702.312 nm/RIU and 396.362 μm/RIU, respectively, by the two methods. Our work provides a new kind of RI sensor with the advantages of high sensitivity, mechanical robustness, and low cross sensitivity to temperature. Also, we provide a new method to deal with gold film with a femtosecond laser.展开更多
An interferometer based on a D-shape chaotic optical tiber tor measurement ot multiparameters was proposed. The sensing structure relied on a D-shape fiber section spliced in between two singlemode fibers and interrog...An interferometer based on a D-shape chaotic optical tiber tor measurement ot multiparameters was proposed. The sensing structure relied on a D-shape fiber section spliced in between two singlemode fibers and interrogated in transmission. The optical spectrum was composed by multiple interference loss peaks, which were sensitive to the refractive index, temperature and strain-maximum sensitivities of 95.2 nm/RIU, 10.5 pm/℃ and -3.51 pm/με, respectively, could be achieved.展开更多
A 4-sensor folded Sagnac sensor array with an active phase biasing scheme is presented. The overlapping of the signal and noise pulse is avoided through a time division multiplexing scheme and the noise pulses is elim...A 4-sensor folded Sagnac sensor array with an active phase biasing scheme is presented. The overlapping of the signal and noise pulse is avoided through a time division multiplexing scheme and the noise pulses is eliminated almost completely. The scheme can address 16 sensors when the repeat frequency of input pulse is at 68.3 kHz. The alternative phase bias technique is demonstrated, which can provide sensors with stable phase bias. The future benefit of this technique is that the 1/f noise in the circuit can be suppressed.展开更多
The creep properties of optical fiber used in fiber optical sensors were studied in this paper. A low co- herent white light double interferometer system was designed and calibrated and the creep deforma- tions of opt...The creep properties of optical fiber used in fiber optical sensors were studied in this paper. A low co- herent white light double interferometer system was designed and calibrated and the creep deforma- tions of optical fibers under static and cyclic loadings were measured with this device. The research results showed that polymer coated optical fibers crept at the beginning when they were under static or cyclic load. As the number of the cyclic loading or the static loading times increased the creep tended to stop. Thus to ensure that the optical fiber keeps pre-stress for long time in pressure transducer, it is recommended that the optical fiber should be tensioned cyclically before being fixed into the sensor device.展开更多
In this letter, a novel mechanism of hybrid optical bistability is proposed by using nonlinear mechanism in the frequency domain. This device is based on electro-optical feedback through the fiber Bragg grating on pie...In this letter, a novel mechanism of hybrid optical bistability is proposed by using nonlinear mechanism in the frequency domain. This device is based on electro-optical feedback through the fiber Bragg grating on piezoelectric transducer (PZT) to tune continuous wave (CW) fiber laser. The optical bistable characteristics for two manners of separately alternating input power and bias voltage are discussed. The smallest wavelength shift of the order of 0.001 nm needed to realize a switching process in this optical bistability device is estimated. The potential applications of this device in the optical fiber sensor technique are also discussed.展开更多
基金Funded by the National Natural Science Foundation of China(No.61205062)the Scientific Research Foundation for Doctor of University(No.2019Y02)。
文摘A novel fiber optic sensor based on optical composite oxygen-sensitive film was developed for determination of 2,4-dichlorophenol(DCP).The optical composite oxygen-sensitive film consists of tris(2,2’-bipyridyl)dichloro ruthenium(II)hexahydrate(Ru(bpy)3Cl2)as the fluorescence indicator and iron(III)tetrasulfophthalocyanine(Fe(III)PcTs)as bionic enzyme.A lock-in amplifier was used for detecting the lifetime of the composite oxygen-sensitive film by measuring the phase delay of the sensor head.The different variables affecting the sensor performance were evaluated and optimized.Under the optimal conditions(i e,pH 6.0,25℃,Fe(III)PcTs concentration of 5.0×10^-5 mol/L),the linear detection range,detection limit and response time of the fiber optic sensor are 3.0×10^-7-9.0×10^-5 mol/L,4.8×10^-8 mol/L(S/N=3),and 220 s,respectively.The sensor displays high selectivity,good repeatability and stability,which have good potentials in analyzing DCP concentration in practical water samples.
基金the Fundamental Research Foundation of Harbin Engineering University, (grant number HEUF 04017)
文摘A type of combined optical fiber interferometric acoustic emission sensor is proposed. The sensor can be independent on the laser source and make light interference by matching the lengths of two arms,so it can be used to monitor the health of large structure. Theoretical analyses indicate that the system can be equivalent to the Michelson interferometer with two optical fiber loop reflectors,and its sensitivity has been remarkably increased because of the decrease of the losses of light energy. PZT is powered by DC regulator to control the operating point of the system,so the system can accurately detect feeble vibration which is generated by ultrasonic waves propagating on the surface of solid. The amplitude and the frequency of feeble vibration signal are obtained by detecting the output light intensity of interferometer and using Fourier transform technique. The results indicate that the system can be used to detect the acoustic emission signals by the frequency characteristics.
文摘A low fineness fiber optic Fabry-Perot interferometric displacement sensor has been developed and tested.A 0.005 nm displacement resolution is obtained by using He-Ne laser with a high performance ,photodetectors with low noise ,low drift operational amplifiers,6-pole Butterworth filters and perfect digital signal processing circuits.
基金supported in part by the Startup Fund from Southern University of Science and Technology and Shenzhen government under Grant No.Y01236128by the National Natural Science Foundation of China(NSFC)under Grant Nos.61627816 and 61975076by the Qing Lan Project of Jiangsu Province。
文摘Phase-sensitive optical time-domain reflectometry(Φ-OTDR)has attracted numerous attention due to its superior performance in detecting the weak perturbations along the fiber.Relying on the ultra-sensitivity of light phase to the tiny deformation of optical fiber,Φ-OTDR has been treated as a powerful technique with a wide range of applications.It is fundamental to extract the phase of scattering light wave accurately and the methods include coherent detection,I/Q demodulation,3 by 3 coupler,dual probe pulses,and so on.Meanwhile,researchers have also made great efforts to improve the performance ofΦ-OTDR.The frequency response range,the measurement accuracy,the sensing distance,the spatial resolution,and the accuracy of event discrimination,all have been enhanced by various techniques.Furthermore,lots of researches on the applications in various kinds of fields have been carried out,where certain modifications and techniques have been developed.Therefore,Φ-OTDR remains as a booming technique in both researches and applications.
基金Funded by the National Natural Science Foundation of China(Nos.61377092 and 51303115)
文摘A new fi ber optic sensor based on the oxidation of 2,4-dichlorophenol(DCP) catalyzed by iron(II) phthalocyanine(Fe(II)Pc) was developed for the determination of DCP. The optical oxygen sensing fi lm containing fl uorescence indicator Ru(bpy)3Cl2 was used to detect the consumption of oxygen in solution. Moreover, a lock-in amplifier was used to determine the lifetime of the sensor head by detecting its phase delay change. The results reveal that the sensor has a linear detection range of 1.0×10^-6- 9.0×10^-5 mol/L and a response time of 5 min. The sensor also has high selectivity, good repeatability and stability. It can be used effectively to determine DCP concentration in real samples.
文摘The security of civil engineering is an important task due to the economic, social and environmental significance. Compared with conventional sensors, the optical fiber sensors have their unique characteristics.Being durable, stable and insensitive to external perturbations,they are particular interesting for the long-term monitoring of civil structures.Focus is on absolute measurement optical fiber sensors, which are emerging from the monitoring large structural, including SOFO system, F-P optical fiber sensors, and fiber Bragg grating sensors. The principle, characteristic and application of these three kinds of optical fiber sensors are described together with their future prospects.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61735014,61327012,and 61275088)the Scientific Research Program Funded by Shaanxi Provincial Education Department,China(Grant No.08JZ58)the Northwest University Graduate Innovation and Creativity Funds,China(Grant No.YZZ17088)
文摘An ultrasonic sensitivity-improved fiber-optic Fabry-Perot interferometer (FPI) is proposed and employed for ultra- sonic imaging of seismic physical models (SPMs). The FPI comprises a flexible ultra-thin gold film and the end face of a graded-index multimode fiber (MMF), both of which are enclosed in a ceramic tube. The MMF in a specified length can collimate the diverged light beam and compensate for the light loss inside the air cavity, leading to an increased spectral fringe visibility and thus a steeper spectral slope. By using the spectral sideband filtering technique, the collimated FP1 shows an improved ultrasonic response. Moreover, two-dimensional images of two SPMs are achieved in air by recon- structing the pulse-echo signals through using the time-of-flight approach. The proposed sensor with easy fabrication and compact size can be a good candidate for high-sensitivity and high-precision nondestructive testing of SPMs.
基金the financial support under grant No.NSC 93-2212-E-155-007 for this work
文摘Fiber optic sensor has been widely used as a structural health monitoring device by either embedding into or surface bonding onto the structures. The strain of optic fiber induced by the host material is strongly dependent on the bonding characteristics which include the protective coating, adhesive layer and the length of bonding. The strains between the fiber optics and host structure are not exact the same. The existence of the protective coating and adhesive layer would affect the strain measured by the surface bonding optic sensor. The analytical expression of the strain in the optic fiber induced by the host material was presented. The results were validated by the finite element method. The theoretical predictions reveal that the strain in the optical fiber is lower than the strain of host material. Parametric study shows that a long bonding length and high modulus of protective coating would increase the percentage of strain transferring into the optical fiber. Experiments were conducted by using Mach-Zehnder interferometer to measure the strain of the surface bonding optic fiber induced by the host structure. Good agreements were observed in comparison with the experimental results and theoretical predictions.
文摘The method for measuring the strain of an object using an optical fiber and a frequency modulation(FM) coupled cavity semiconductor laser is proposed.This method uses the coherent FM heterodyne principle of the Michelson interferometer and can avoid the π/2 nonreciprocal phase bias and phase shifting problem existing in general fiber optic interferential sensors, the maximum detection range is limited by the coherent length of the semiconductor laser and its relative factor.
基金Sponsored by the Natural Science Foundation of Heilongjiang Province (Grant No. QC2012C081)the Creative Qualified Scientists and Technicians Foundation of Harbin City (Grant No. RC2012QN001025)the National Natural Science Foundation of China (Grant No. 61107069 and 41174161)
文摘In order to improve the multiplexing capability of the optical sensors based on the lower interferential optic fiber sensing technology and the white light fiber-optic Mach-Zehnder interferometer,reflective ladder topology network ( RLT) with tailored formula was proposed. The topology network consists of 6 rungs sensing elements linked by 5 couplers. Two cases with different choices of couplers were contrasted: one is equal coupling ratio,and the other is tailored coupling ratio. Through the simulation of these two cases,the detailed multiplexing capability was analyzed,and accordingly the experiments were also carried out. The simulation results showed that,the tailored formula enhances the multiplexing capability of the structure. In the first case, the maximum number of sensors which can be multiplexed is 8,and in the other case is 12 fiber optic sensors. The experimental results have a good agreement with numerical simulation results. Thus,it is considered expedient to incorporate RLT into large-scale building,grounds,bridges,dams,tunnels,highways and perimeter security.
基金supported by the National Basic Research Program of China (No.2011CB013000)the 863 Program of the Ministry of Science and Technology of China (No.2015AA043504)the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China (No.708018)
文摘An optical fiber extrinsic Fabry-Perot interferometer (EFPI) is designed and fabricated for refractive index (RI) sensing. To test the RI of liquid, the following two different methods are adopted: the wavelength tracking method and the Fourier-transform white-light interferometry (FTWLI). The sensitivities of sensors with cavity lengths of 288.1 and 358.5 μm are 702.312 nm/RIU and 396.362 μm/RIU, respectively, by the two methods. Our work provides a new kind of RI sensor with the advantages of high sensitivity, mechanical robustness, and low cross sensitivity to temperature. Also, we provide a new method to deal with gold film with a femtosecond laser.
文摘An interferometer based on a D-shape chaotic optical tiber tor measurement ot multiparameters was proposed. The sensing structure relied on a D-shape fiber section spliced in between two singlemode fibers and interrogated in transmission. The optical spectrum was composed by multiple interference loss peaks, which were sensitive to the refractive index, temperature and strain-maximum sensitivities of 95.2 nm/RIU, 10.5 pm/℃ and -3.51 pm/με, respectively, could be achieved.
基金supported by the National University of Defense Technology under Grant No. jc08-07-01.
文摘A 4-sensor folded Sagnac sensor array with an active phase biasing scheme is presented. The overlapping of the signal and noise pulse is avoided through a time division multiplexing scheme and the noise pulses is eliminated almost completely. The scheme can address 16 sensors when the repeat frequency of input pulse is at 68.3 kHz. The alternative phase bias technique is demonstrated, which can provide sensors with stable phase bias. The future benefit of this technique is that the 1/f noise in the circuit can be suppressed.
文摘The creep properties of optical fiber used in fiber optical sensors were studied in this paper. A low co- herent white light double interferometer system was designed and calibrated and the creep deforma- tions of optical fibers under static and cyclic loadings were measured with this device. The research results showed that polymer coated optical fibers crept at the beginning when they were under static or cyclic load. As the number of the cyclic loading or the static loading times increased the creep tended to stop. Thus to ensure that the optical fiber keeps pre-stress for long time in pressure transducer, it is recommended that the optical fiber should be tensioned cyclically before being fixed into the sensor device.
文摘In this letter, a novel mechanism of hybrid optical bistability is proposed by using nonlinear mechanism in the frequency domain. This device is based on electro-optical feedback through the fiber Bragg grating on piezoelectric transducer (PZT) to tune continuous wave (CW) fiber laser. The optical bistable characteristics for two manners of separately alternating input power and bias voltage are discussed. The smallest wavelength shift of the order of 0.001 nm needed to realize a switching process in this optical bistability device is estimated. The potential applications of this device in the optical fiber sensor technique are also discussed.