Radio frequency(RF)transmission systems with high-precision phase stability are required by the next generation of particle colliders and light sources.An RF transmission system was designed to meet this requirement.I...Radio frequency(RF)transmission systems with high-precision phase stability are required by the next generation of particle colliders and light sources.An RF transmission system was designed to meet this requirement.In this system,RF signal generated at the sending end is modulated onto a continuous wave(CW)optical carrier,transmitted through an optical fiber,and demodulated at the receiving end.The phase drift is detected by a digital phase monitor with femtosecond-level accuracy and compensated by a motorized optical fiber delay line(ODL).The measurement results show that the long-term phase drifts can be stabilized to within 100 fs(pk-pk),500 fs(pk-pk),and 1.8 ps(pk-pk)in a 400-meter-long optical fiber over 1 h,24 h,and 10 days,respectively.展开更多
同步数字体系(Synchronous Digital Hierarchy,SDH)光纤传输网在电力通信中扮演着至关重要的角色。光纤传输网凭借其高带宽、大容量以及高可靠性的特性,已成为电力通信的骨干网络技术。该技术支持电力系统的远程控制、实时监测以及灾难...同步数字体系(Synchronous Digital Hierarchy,SDH)光纤传输网在电力通信中扮演着至关重要的角色。光纤传输网凭借其高带宽、大容量以及高可靠性的特性,已成为电力通信的骨干网络技术。该技术支持电力系统的远程控制、实时监测以及灾难恢复等关键功能,显著提高了电力系统的运行效率和服务质量。通过分析SDH技术的基本概念、建设流程及其在电力通信中的应用,揭示SDH光纤传输网对于电力系统稳定运行的重要贡献,并对其未来发展趋势进行展望。展开更多
基金supported by the Foundation of the Key Laboratory of Particle Acceleration Physics and Technology of Chinese Academy of Sciences(No.29201531231141001)
文摘Radio frequency(RF)transmission systems with high-precision phase stability are required by the next generation of particle colliders and light sources.An RF transmission system was designed to meet this requirement.In this system,RF signal generated at the sending end is modulated onto a continuous wave(CW)optical carrier,transmitted through an optical fiber,and demodulated at the receiving end.The phase drift is detected by a digital phase monitor with femtosecond-level accuracy and compensated by a motorized optical fiber delay line(ODL).The measurement results show that the long-term phase drifts can be stabilized to within 100 fs(pk-pk),500 fs(pk-pk),and 1.8 ps(pk-pk)in a 400-meter-long optical fiber over 1 h,24 h,and 10 days,respectively.
文摘同步数字体系(Synchronous Digital Hierarchy,SDH)光纤传输网在电力通信中扮演着至关重要的角色。光纤传输网凭借其高带宽、大容量以及高可靠性的特性,已成为电力通信的骨干网络技术。该技术支持电力系统的远程控制、实时监测以及灾难恢复等关键功能,显著提高了电力系统的运行效率和服务质量。通过分析SDH技术的基本概念、建设流程及其在电力通信中的应用,揭示SDH光纤传输网对于电力系统稳定运行的重要贡献,并对其未来发展趋势进行展望。