Thin oxidized copper films in various thickness values are deposited onto quartz glass substrates by electron beam evaporation. The ellipsometry parameters and transmittance in a wavelength range of 300 nm-1000 nm are...Thin oxidized copper films in various thickness values are deposited onto quartz glass substrates by electron beam evaporation. The ellipsometry parameters and transmittance in a wavelength range of 300 nm-1000 nm are collected by a spectroscopic ellipsometer and a spectrophotometer respectively. The effective thickness and optical constants, i.e., refractive index n and extinction coefficient k, are accurately determined by using newly developed ellipsometry combined with transmittance iteration method. It is found that the effective thickness determined by this method is close to the physical thickness and has obvious difference from the mass thickness for very thin film due to variable density of film. Furthermore, the thickness dependence of optical constants of thin oxidized Cu films is analyzed.展开更多
Glassy substrates TeSeSn thin films were thermally evaporated onto chemically cleaned glass. The as-deposited (as-prepared) and annealed thin films were characterized by scanning electron microscopy (SEM), X-ray diffr...Glassy substrates TeSeSn thin films were thermally evaporated onto chemically cleaned glass. The as-deposited (as-prepared) and annealed thin films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and optical transmission. The optical absorption of the as-prepared and annealed TeSeSn thin films is studied in the wavelength range of 300 nm - 900 nm. The direct optical energy gap (Eg) increases from 1.989 to 2.143 eV with increasing the thickness of the as-prepared films from 100 to 200 nm. The annealed TeSeSn films showed a decrease in the optical energy gap with increasing the annealing temperature. The effect of heat treatment on the lattice dielectric constant (εL) and carrier concentration (N) are also studied.展开更多
The accurate monitoring of optical thin-film thickness is a key technique for depositing optical thin-film. For existing coating equipments, which are low precision and automation level on monitoring thin-film thickne...The accurate monitoring of optical thin-film thickness is a key technique for depositing optical thin-film. For existing coating equipments, which are low precision and automation level on monitoring thin-film thickness, a new photoelectric control and analysis system has been developed. In the new system, main techniques include a photoelectric system with dual-light path, a dual-lock-phase circuit system and a comprehensive digital processing-control-analysis system.The test results of new system show that the static and dynamic stabilities and the control precision of thin-film thickness are extremely increased. The standard deviation of thin-film thickness, which indicates the duplication of thin-film thickness monitoring, is equal to or less than 0.72%. The display resolution limit on reflectivity is 0.02 %. In the system, the linearity of drift is very high, and the static drift ratio approaches zero.展开更多
The a-Si∶H films with different thickness smaller than 1 μm were deposited by plasma enhanced chemical vapor deposition (PECVD) under the optimum deposition conditions. The effect of different thickness on film prop...The a-Si∶H films with different thickness smaller than 1 μm were deposited by plasma enhanced chemical vapor deposition (PECVD) under the optimum deposition conditions. The effect of different thickness on film properties is analyzed.The results show that,with the increase of the film thickness,the dark conductivity, photoconductivity and threshold voltage increase, the optical gap and peak ratio of TA to TO in the Raman spectra decrease, the refractive index keeps almost constant, and the optical absorption coefficient and current ratio of on/off state first maximize and then reduce.展开更多
There are few experimental results available on film thickness at speeds above 5 m/s and they are almost all based on the optical ball-on-disc test rig.In contrast to the contacts in a rolling bearing,in which the lub...There are few experimental results available on film thickness at speeds above 5 m/s and they are almost all based on the optical ball-on-disc test rig.In contrast to the contacts in a rolling bearing,in which the lubricant in the oil reservoir distributes symmetrically,ball-on-disc contact shows asymmetry of lubricant distribution due to centrifugal effects.In order to closely imitate the contact occurring between the ball and the outer ring of a ball bearing,this study proposes an experimental model based on ball-on-glass ring contact.An optical matrix method is used to analyze the optical system,which is composed of a steel ball-lubricant-chromium-coated glass ring.Based on the optical analysis,the measurement system is improved in order to obtain a high quality interference image,which makes it possible to measure the film thickness at high-speeds conditions.展开更多
The enhanced optical absorption measured by Constant Photocurrent Method (CPM) of hydrogenated nanocrystalline silicon thin films is due mainly to bulk and/or surface light scattering effects. A new numerical method i...The enhanced optical absorption measured by Constant Photocurrent Method (CPM) of hydrogenated nanocrystalline silicon thin films is due mainly to bulk and/or surface light scattering effects. A new numerical method is presented to calculate both true optical absorption and scattering coefficient from CPM absorption spectra of nanotextured nano-crystalline silicon films. Bulk and surface light scattering contributions can be unified through the correlation obtained between the scattering coefficient and surface roughness obtained using our method.展开更多
The substrate temperature(Ts)and N2 partial pressure(PN2)dependent optical and electrical properties of sputtered InGaZnON thin films are studied.With the increased Ts and PN2,the thin film becomes more crystallized a...The substrate temperature(Ts)and N2 partial pressure(PN2)dependent optical and electrical properties of sputtered InGaZnON thin films are studied.With the increased Ts and PN2,the thin film becomes more crystallized and nitrified.The Hall mobility,free carrier concentration(Ne),and electrical conductivity increase with the lowered interfacial potential barrier during crystal growing.The photoluminescence(PL)intensity decreases with the increased Ne.The band gap(Eg)narrows and the linear refractive index(n1)increases with the increasing concentration of N in the thin films.The Stokes shift between the PL peak and absorption edge decreases with Eg.The n1,dispersion energy,average oscillator wavelength,and oscillator length strength all increase with n1.The single oscillator energy decreases with n1.The nonlinear refractive index and third order optical susceptibility increase with n1.The Seebeck coefficient,electron effective mass,mean free path,scattering time,and plasma energy are all Ne dependent.展开更多
From an ordinary condition,using a full three-dimensional model theory and an infinite perturbation expansion method,an exact solution of the reflection coefficient for the coated narrow stripe-geometry optical wavegu...From an ordinary condition,using a full three-dimensional model theory and an infinite perturbation expansion method,an exact solution of the reflection coefficient for the coated narrow stripe-geometry optical waveguide devices has been derived.All six components and the vector property of the electromagnetic field have been considered.The results are suitable for the symmetric and asymmetric waveguides.展开更多
Cadmium tin oxide Cd2SnO4 thin films with a thickness of 228.5 nm were prepared by RF magnetron sputtering technique on glass substrates at room temperature. AFM has been utilized to study the morphology of these film...Cadmium tin oxide Cd2SnO4 thin films with a thickness of 228.5 nm were prepared by RF magnetron sputtering technique on glass substrates at room temperature. AFM has been utilized to study the morphology of these films as a function of annealing temperature at the nanoscale. The optical properties of these films, such as the transmittance, T(λ), and reflectance, R(λ), have been studied as a function of annealing temperature. The optical constants, such as optical energy gap, width of the band tails of the localized states, refractive index, oscillatory energy, dispersion energy, real and imaginary parts of both dielectric constant and optical conductivity have been found to be affected by changing the annealing temperature of the films.展开更多
Objective: To assess the lower tear meniscus height(LTMH), central tear film thickness(CTFT), and central corneal epithelial thickness(CCET) after deep anterior lamellar keratoplasty(DALK). Methods: This was...Objective: To assess the lower tear meniscus height(LTMH), central tear film thickness(CTFT), and central corneal epithelial thickness(CCET) after deep anterior lamellar keratoplasty(DALK). Methods: This was a retrospective cross-sectional study of 20 patients who had DALK in one eye over a three-month period. LTMH, CTFT, and CCET of the operated eyes and the unoperated fellow eyes were measured using high-definition optical coherence tomography(HD-OCT). Correlations between three OCT assessments and age, time following surgery, graft size, bed size, and the number of residual sutures were analyzed. Results: Compared to patients with keratoconus, patients with other corneal conditions had significantly higher CCET in the fellow eye(P=0.024). For all patients, CCET in the operated eye was significantly negatively correlated with the number of residual sutures(R=-0.579, P=0.008), and was significantly positively correlated with time following surgery(R=0.636, P=0.003). In the fellow eye, a significant positive correlation was found between age and CCET(R=0.551, P=0.012), and a significant negative correlation between age and CTFT(R=-0.491, P=0.028). LTMH was found to be significantly correlated between operated and fellow eyes(R=0.554, P=0.011). There was no significant correlation between LTMH and age, bed/graft size, time following surgery, or residual sutures(all possible correlations, P0.05). Conclusions: Patients with keratoconus tend to have a thinner central corneal epithelium. Corneal epithelium keeps regenerating over time after DALK. DALK did not induce a significant change in tear volume compared with the fellow eye. Postoperative tear function might depend on an individual's general condition, rather than on age, gender, bed/graft size, time following surgery, or residual sutures.展开更多
Seasonal variation of the Tianjin coastal atmospheric aerosol opticalproperties are important for improving the atmosphere correction precision of marinesatellite and learning the environment of the boundary between t...Seasonal variation of the Tianjin coastal atmospheric aerosol opticalproperties are important for improving the atmosphere correction precision of marinesatellite and learning the environment of the boundary between the Bohai Sea and theland. In this paper, the aerosol optical data of Tianjin coastal area from April 2010 toMay 2011 were observed by using the CE317 Solar Photometer, and the aerosol opticalproperties were analyzed. The results show that: Aerosol Optical Thickness (AOT)spectra are basically in accord with Angstrom relationship; there are three basic typesof AOT daily variations, which are rising type, levelling type, and declining type; inTianjin Coastland, the mean value of AOT is highest in autumn, which is 0.686. Thevalue is lower in spring and summer, and hits the lowest point in winter. Angstromexponent α increases successively from spring, summer, autumn to winter. Due to thedusty, the angstrom exponent α in spring is lowest, the mean of which is 0.854.Compared with Qingdao Coastland, the atmospheric aerosol optical properties presentcharacteristics of regionality.展开更多
The understanding of aerosol properties in troposphere, especially their behavior near the ground level, is indispensable for precise evaluation of their impact on the Earth’s radiation studies. Although a sunphotome...The understanding of aerosol properties in troposphere, especially their behavior near the ground level, is indispensable for precise evaluation of their impact on the Earth’s radiation studies. Although a sunphotometer or a skyradiometer can provide the aerosol optical thickness (AOT), their application is limited to daytime under near cloud free conditions. In order to attain the multi-wavelength observation for both day- and night-time including cloudy conditions, here we propose a novel monitoring technique by means of simultaneous measurement using a nephelometer (450, 550, and 700 nm), an aethalometer (370, 470, 520, 590, 660, 880, and 950 nm), and a visibility meter (550 nm). On the basis of the multi-wavelength data of scattering and absorption coefficients from the nephelometer and aethalometer, respectively, first we calculate the real-time values of aerosol extinction coefficient in addition to the Angstrom exponent (AE). Then, correction of these values is carried out by comparing the resulting extinction coefficient with the corresponding value obtained from the optical data of visibility-meter. The major reason for this correction is the loss of relatively coarse particles due to the aerodynamic effect as well as evaporation of water content from particles during the sampling procedure. Then, with the ancillary data of vertical aerosol profile obtained with a lidar (532 nm), the temporal change of AOT is estimated. In this way, information from the sampling can be converted to the ambient properties in the atmospheric boundary layer. Furthermore, daytime data from a sunphotometer (368, 500, 675, and 778 nm) and a skyradiometer (340, 380, 400, 500, 675, 870, and 1020 nm) are used to validate the resulting AOT values. From the overall procedure, we can estimate the AE and AOT values from the sampling data, with uncertainties of approximately 5% for AE and 10% for AOT. Such a capability will be useful for studying aerosol properties throughout 24 hours regardless of the solar radiation and cloud coverage.展开更多
Novel and effective H-shaped chromophores were doped into polymethyl methacrylate (PMMA) to form guest-host polymer thin films. The measurement results of Maker fringe method show that the polymer thin films contain...Novel and effective H-shaped chromophores were doped into polymethyl methacrylate (PMMA) to form guest-host polymer thin films. The measurement results of Maker fringe method show that the polymer thin films containing the H-shaped chromophores as a guest exhibit high second harmonic coefficients (d33) compared with other two-dimensional chromophores.展开更多
Mathematical modeling of the interaction between solar radiation and the Earth's atmosphere is formalized by the radiative transfer equation(RTE), whose resolution calls for two-stream approximations among other m...Mathematical modeling of the interaction between solar radiation and the Earth's atmosphere is formalized by the radiative transfer equation(RTE), whose resolution calls for two-stream approximations among other methods. This paper proposes a new two-stream approximation of the RTE with the development of the phase function and the intensity into a third-order series of Legendre polynomials. This new approach, which adds one more term in the expression of the intensity and the phase function, allows in the conditions of a plane parallel atmosphere a new mathematical formulation of γparameters. It is then compared to the Eddington, Hemispheric Constant, Quadrature, Combined Delta Function and Modified Eddington, and second-order approximation methods with reference to the Discrete Ordinate(Disort) method(δ –128 streams), considered as the most precise. This work also determines the conversion function of the proposed New Method using the fundamental definition of two-stream approximation(F-TSA) developed in a previous work. Notably,New Method has generally better precision compared to the second-order approximation and Hemispheric Constant methods. Compared to the Quadrature and Eddington methods, New Method shows very good precision for wide domains of the zenith angle μ 0, but tends to deviate from the Disort method with the zenith angle, especially for high values of optical thickness. In spite of this divergence in reflectance for high values of optical thickness, very strong correlation with the Disort method(R ≈ 1) was obtained for most cases of optical thickness in this study. An analysis of the Legendre polynomial series for simple functions shows that the high precision is due to the fact that the approximated functions ameliorate the accuracy when the order of approximation increases, although it has been proven that there is a limit order depending on the function from which the precision is lost. This observation indicates that increasing the order of approximation of the phase function of the RTE leads to a better precision in flux calculations. However, this approach may be limited to a certain order that has not been studied in this paper.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11074232,10874160,and 21002097)the National Basic Research Program of China(Grant Nos.2011CB932801 and 2012CB933702)
文摘Thin oxidized copper films in various thickness values are deposited onto quartz glass substrates by electron beam evaporation. The ellipsometry parameters and transmittance in a wavelength range of 300 nm-1000 nm are collected by a spectroscopic ellipsometer and a spectrophotometer respectively. The effective thickness and optical constants, i.e., refractive index n and extinction coefficient k, are accurately determined by using newly developed ellipsometry combined with transmittance iteration method. It is found that the effective thickness determined by this method is close to the physical thickness and has obvious difference from the mass thickness for very thin film due to variable density of film. Furthermore, the thickness dependence of optical constants of thin oxidized Cu films is analyzed.
文摘Glassy substrates TeSeSn thin films were thermally evaporated onto chemically cleaned glass. The as-deposited (as-prepared) and annealed thin films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and optical transmission. The optical absorption of the as-prepared and annealed TeSeSn thin films is studied in the wavelength range of 300 nm - 900 nm. The direct optical energy gap (Eg) increases from 1.989 to 2.143 eV with increasing the thickness of the as-prepared films from 100 to 200 nm. The annealed TeSeSn films showed a decrease in the optical energy gap with increasing the annealing temperature. The effect of heat treatment on the lattice dielectric constant (εL) and carrier concentration (N) are also studied.
基金Sponsored by the Ordnance Industry Scientific Research Fund(ZZ9682-3).
文摘The accurate monitoring of optical thin-film thickness is a key technique for depositing optical thin-film. For existing coating equipments, which are low precision and automation level on monitoring thin-film thickness, a new photoelectric control and analysis system has been developed. In the new system, main techniques include a photoelectric system with dual-light path, a dual-lock-phase circuit system and a comprehensive digital processing-control-analysis system.The test results of new system show that the static and dynamic stabilities and the control precision of thin-film thickness are extremely increased. The standard deviation of thin-film thickness, which indicates the duplication of thin-film thickness monitoring, is equal to or less than 0.72%. The display resolution limit on reflectivity is 0.02 %. In the system, the linearity of drift is very high, and the static drift ratio approaches zero.
文摘The a-Si∶H films with different thickness smaller than 1 μm were deposited by plasma enhanced chemical vapor deposition (PECVD) under the optimum deposition conditions. The effect of different thickness on film properties is analyzed.The results show that,with the increase of the film thickness,the dark conductivity, photoconductivity and threshold voltage increase, the optical gap and peak ratio of TA to TO in the Raman spectra decrease, the refractive index keeps almost constant, and the optical absorption coefficient and current ratio of on/off state first maximize and then reduce.
基金The work was supported by the National Natural Science Foundation of China,the National Key Basic Research (973)Program of China
文摘There are few experimental results available on film thickness at speeds above 5 m/s and they are almost all based on the optical ball-on-disc test rig.In contrast to the contacts in a rolling bearing,in which the lubricant in the oil reservoir distributes symmetrically,ball-on-disc contact shows asymmetry of lubricant distribution due to centrifugal effects.In order to closely imitate the contact occurring between the ball and the outer ring of a ball bearing,this study proposes an experimental model based on ball-on-glass ring contact.An optical matrix method is used to analyze the optical system,which is composed of a steel ball-lubricant-chromium-coated glass ring.Based on the optical analysis,the measurement system is improved in order to obtain a high quality interference image,which makes it possible to measure the film thickness at high-speeds conditions.
文摘The enhanced optical absorption measured by Constant Photocurrent Method (CPM) of hydrogenated nanocrystalline silicon thin films is due mainly to bulk and/or surface light scattering effects. A new numerical method is presented to calculate both true optical absorption and scattering coefficient from CPM absorption spectra of nanotextured nano-crystalline silicon films. Bulk and surface light scattering contributions can be unified through the correlation obtained between the scattering coefficient and surface roughness obtained using our method.
基金Project supported by the National Natural Science Foundation of China(Grant No.61674107)Shenzhen Key Lab Fund,China(Grant No.ZDSYS20170228105421966)Science and Technology Plan of Shenzhen,China(Grant No.JCYJ20170302150335518)
文摘The substrate temperature(Ts)and N2 partial pressure(PN2)dependent optical and electrical properties of sputtered InGaZnON thin films are studied.With the increased Ts and PN2,the thin film becomes more crystallized and nitrified.The Hall mobility,free carrier concentration(Ne),and electrical conductivity increase with the lowered interfacial potential barrier during crystal growing.The photoluminescence(PL)intensity decreases with the increased Ne.The band gap(Eg)narrows and the linear refractive index(n1)increases with the increasing concentration of N in the thin films.The Stokes shift between the PL peak and absorption edge decreases with Eg.The n1,dispersion energy,average oscillator wavelength,and oscillator length strength all increase with n1.The single oscillator energy decreases with n1.The nonlinear refractive index and third order optical susceptibility increase with n1.The Seebeck coefficient,electron effective mass,mean free path,scattering time,and plasma energy are all Ne dependent.
文摘From an ordinary condition,using a full three-dimensional model theory and an infinite perturbation expansion method,an exact solution of the reflection coefficient for the coated narrow stripe-geometry optical waveguide devices has been derived.All six components and the vector property of the electromagnetic field have been considered.The results are suitable for the symmetric and asymmetric waveguides.
文摘Cadmium tin oxide Cd2SnO4 thin films with a thickness of 228.5 nm were prepared by RF magnetron sputtering technique on glass substrates at room temperature. AFM has been utilized to study the morphology of these films as a function of annealing temperature at the nanoscale. The optical properties of these films, such as the transmittance, T(λ), and reflectance, R(λ), have been studied as a function of annealing temperature. The optical constants, such as optical energy gap, width of the band tails of the localized states, refractive index, oscillatory energy, dispersion energy, real and imaginary parts of both dielectric constant and optical conductivity have been found to be affected by changing the annealing temperature of the films.
基金Project supported by the Zhejiang Provincial Natural Science Foundation of China(No.LQ16H120002)
文摘Objective: To assess the lower tear meniscus height(LTMH), central tear film thickness(CTFT), and central corneal epithelial thickness(CCET) after deep anterior lamellar keratoplasty(DALK). Methods: This was a retrospective cross-sectional study of 20 patients who had DALK in one eye over a three-month period. LTMH, CTFT, and CCET of the operated eyes and the unoperated fellow eyes were measured using high-definition optical coherence tomography(HD-OCT). Correlations between three OCT assessments and age, time following surgery, graft size, bed size, and the number of residual sutures were analyzed. Results: Compared to patients with keratoconus, patients with other corneal conditions had significantly higher CCET in the fellow eye(P=0.024). For all patients, CCET in the operated eye was significantly negatively correlated with the number of residual sutures(R=-0.579, P=0.008), and was significantly positively correlated with time following surgery(R=0.636, P=0.003). In the fellow eye, a significant positive correlation was found between age and CCET(R=0.551, P=0.012), and a significant negative correlation between age and CTFT(R=-0.491, P=0.028). LTMH was found to be significantly correlated between operated and fellow eyes(R=0.554, P=0.011). There was no significant correlation between LTMH and age, bed/graft size, time following surgery, or residual sutures(all possible correlations, P0.05). Conclusions: Patients with keratoconus tend to have a thinner central corneal epithelium. Corneal epithelium keeps regenerating over time after DALK. DALK did not induce a significant change in tear volume compared with the fellow eye. Postoperative tear function might depend on an individual's general condition, rather than on age, gender, bed/graft size, time following surgery, or residual sutures.
基金supported by Science Foundation for The Excellent Youth Scholars of Tianjin
文摘Seasonal variation of the Tianjin coastal atmospheric aerosol opticalproperties are important for improving the atmosphere correction precision of marinesatellite and learning the environment of the boundary between the Bohai Sea and theland. In this paper, the aerosol optical data of Tianjin coastal area from April 2010 toMay 2011 were observed by using the CE317 Solar Photometer, and the aerosol opticalproperties were analyzed. The results show that: Aerosol Optical Thickness (AOT)spectra are basically in accord with Angstrom relationship; there are three basic typesof AOT daily variations, which are rising type, levelling type, and declining type; inTianjin Coastland, the mean value of AOT is highest in autumn, which is 0.686. Thevalue is lower in spring and summer, and hits the lowest point in winter. Angstromexponent α increases successively from spring, summer, autumn to winter. Due to thedusty, the angstrom exponent α in spring is lowest, the mean of which is 0.854.Compared with Qingdao Coastland, the atmospheric aerosol optical properties presentcharacteristics of regionality.
文摘The understanding of aerosol properties in troposphere, especially their behavior near the ground level, is indispensable for precise evaluation of their impact on the Earth’s radiation studies. Although a sunphotometer or a skyradiometer can provide the aerosol optical thickness (AOT), their application is limited to daytime under near cloud free conditions. In order to attain the multi-wavelength observation for both day- and night-time including cloudy conditions, here we propose a novel monitoring technique by means of simultaneous measurement using a nephelometer (450, 550, and 700 nm), an aethalometer (370, 470, 520, 590, 660, 880, and 950 nm), and a visibility meter (550 nm). On the basis of the multi-wavelength data of scattering and absorption coefficients from the nephelometer and aethalometer, respectively, first we calculate the real-time values of aerosol extinction coefficient in addition to the Angstrom exponent (AE). Then, correction of these values is carried out by comparing the resulting extinction coefficient with the corresponding value obtained from the optical data of visibility-meter. The major reason for this correction is the loss of relatively coarse particles due to the aerodynamic effect as well as evaporation of water content from particles during the sampling procedure. Then, with the ancillary data of vertical aerosol profile obtained with a lidar (532 nm), the temporal change of AOT is estimated. In this way, information from the sampling can be converted to the ambient properties in the atmospheric boundary layer. Furthermore, daytime data from a sunphotometer (368, 500, 675, and 778 nm) and a skyradiometer (340, 380, 400, 500, 675, 870, and 1020 nm) are used to validate the resulting AOT values. From the overall procedure, we can estimate the AE and AOT values from the sampling data, with uncertainties of approximately 5% for AE and 10% for AOT. Such a capability will be useful for studying aerosol properties throughout 24 hours regardless of the solar radiation and cloud coverage.
基金supported by a Start-up Grant from Southeast University to Dr Chao-Zhi Zhang and the Science Foundation of Jiangsu Province of China(No.BK2004085).
文摘Novel and effective H-shaped chromophores were doped into polymethyl methacrylate (PMMA) to form guest-host polymer thin films. The measurement results of Maker fringe method show that the polymer thin films containing the H-shaped chromophores as a guest exhibit high second harmonic coefficients (d33) compared with other two-dimensional chromophores.
文摘Mathematical modeling of the interaction between solar radiation and the Earth's atmosphere is formalized by the radiative transfer equation(RTE), whose resolution calls for two-stream approximations among other methods. This paper proposes a new two-stream approximation of the RTE with the development of the phase function and the intensity into a third-order series of Legendre polynomials. This new approach, which adds one more term in the expression of the intensity and the phase function, allows in the conditions of a plane parallel atmosphere a new mathematical formulation of γparameters. It is then compared to the Eddington, Hemispheric Constant, Quadrature, Combined Delta Function and Modified Eddington, and second-order approximation methods with reference to the Discrete Ordinate(Disort) method(δ –128 streams), considered as the most precise. This work also determines the conversion function of the proposed New Method using the fundamental definition of two-stream approximation(F-TSA) developed in a previous work. Notably,New Method has generally better precision compared to the second-order approximation and Hemispheric Constant methods. Compared to the Quadrature and Eddington methods, New Method shows very good precision for wide domains of the zenith angle μ 0, but tends to deviate from the Disort method with the zenith angle, especially for high values of optical thickness. In spite of this divergence in reflectance for high values of optical thickness, very strong correlation with the Disort method(R ≈ 1) was obtained for most cases of optical thickness in this study. An analysis of the Legendre polynomial series for simple functions shows that the high precision is due to the fact that the approximated functions ameliorate the accuracy when the order of approximation increases, although it has been proven that there is a limit order depending on the function from which the precision is lost. This observation indicates that increasing the order of approximation of the phase function of the RTE leads to a better precision in flux calculations. However, this approach may be limited to a certain order that has not been studied in this paper.