This paper introduces an ant colony routing and wavelength assignment algorithm based on cross-layer design(CL-ACRWA),which can overcome the adverse effects of Doppler wavelength shift on data transmission in optical ...This paper introduces an ant colony routing and wavelength assignment algorithm based on cross-layer design(CL-ACRWA),which can overcome the adverse effects of Doppler wavelength shift on data transmission in optical satellite networks. Firstly, a cross-layer optimization model is built, which considers the Doppler wavelength shift, the transmission delay as well as wavelength-continuity constraint. Then an ant colony algorithm is utilized to solve the cross-layer optimization model, resulting in finding an optimal light path satisfying the above constraints for every connection request. The performance of CL-ACRWA is measured by the communication success probability, the convergence property and the transmission delay. Simulation results show that CL-ACRWA performs well in communication success probability and has good global search ability as well as fast convergence speed. Meanwhile, the transmission delay can meet the basic requirement of real-time transmission of business.展开更多
An optical routing-switching technology based on optical switch array is proposed.The characteristics of the blocking and nonblocking networks are analyzed and compared,odd-even sorting network is used to realize opti...An optical routing-switching technology based on optical switch array is proposed.The characteristics of the blocking and nonblocking networks are analyzed and compared,odd-even sorting network is used to realize optical routing-switching,relative routing-switching protocol is designed.Simulation test under load shows that it can reduce a blocking effectively and enhance an efficiency of switching.Further,it can transfer the processing and switching within parallel computer from electric domain to optical domain. It can make parallel computer coordinating computing and processing at much more higher speed, storing and transmitting even more efficiently.展开更多
The issue of burst losses imposes a constraint on the development of Optical Burst Switching (OBS) networks. Heavy burst losses strongly affect the Quality of Service (QoS) intended by end users. This article pres...The issue of burst losses imposes a constraint on the development of Optical Burst Switching (OBS) networks. Heavy burst losses strongly affect the Quality of Service (QoS) intended by end users. This article presents a QoS aware Routing and Wavelength Allocation (RWA) technique for burst switching in OBS networks. The RWA problem is modeled as a bi-objective Integer Linear Programming (ILP) problem, where objective functions are based on minimizing the number of wavelengths used and the number of hops traversed to fulfill the burst transmission requests for a given set of node pairs. The ILP model is solved using a novel approach based on a Differential Evolution (DE) algorithm. Analytical results show that the DE algorithm provides a better performance compared to shortest path routing, which is a widely accepted routing strategy for OBS networks.展开更多
In order to overcome the adverse effects of Doppler wavelength shift on data transmission in the optical satellite networks,a dynamic routing and wavelength assignment algorithm based on crosslayer design( CL-DRWA) is...In order to overcome the adverse effects of Doppler wavelength shift on data transmission in the optical satellite networks,a dynamic routing and wavelength assignment algorithm based on crosslayer design( CL-DRWA) is introduced which can improve robustness of the network. Above all,a cross-layer optimization model is designed,which considers transmission delay and wavelength-continuity constraint,as well as Doppler wavelength shift. Then CL-DRWA is applied to solve this model,resulting in finding an optimal light path satisfying the above constraints for every connection request. In CL-DRWA,Bellman-Ford method is used to find an optimal route and a distributed relative capacity loss method is implemented to get an optimal wavelength assignment result on the optimal route. Moreover,compared with the dynamic routing and wavelength assignment algorithm based on minimum delay strategy( MD-DRWA),CL-DRWA can make an improvement of 5. 3% on the communication success probability. Meanwhile,CL-DRWA can meet the requirement of transmission delay for real-time services.展开更多
Microwave transmission in a space network is greatly restricted due to precious radio spectrum resources. To meet the demand for large-bandwidth, global seamless coverage and on-demanding access, the Space All-Optical...Microwave transmission in a space network is greatly restricted due to precious radio spectrum resources. To meet the demand for large-bandwidth, global seamless coverage and on-demanding access, the Space All-Optical Network(SAON) becomes a promising paradigm. In this paper, the related space optical communications and network programs around the world are first briefly introduced. Then the intelligent Space All-Optical Network(i-SAON), which can be deemed as an advanced SAON, is illustrated, with the emphasis on its features of high survivability, sensing and reconfiguration intelligence, and large capacity for all optical load and switching. Moreover, some key technologies for i-SAON are described, including the rapid adjustment and control of the laser beam direction, the deep learning-based multi-path anti-fault routing, the intelligent multi-fault diagnosis and switching selection mechanism, and the artificial intelligence-based spectrum sensing and situational forecasting.展开更多
The A'Prune quality of service (QoS) routing algorithm was proposed to compute K-shortest paths satisfying multiple QoS constraints, The A'Prune is considered to be one of the practical routing algorithms for inte...The A'Prune quality of service (QoS) routing algorithm was proposed to compute K-shortest paths satisfying multiple QoS constraints, The A'Prune is considered to be one of the practical routing algorithms for intelligent optical networks because of its flexibility in handling many practical constraints, This article gives detailed performance studies of the algorithm through extensive simulation experiments. We found that both the running time and the memory space requirements of the algorithm are large, especially when the network size increases, in this article, we also propose an approach to improving the performance of the A'Prune algorithm. The improvements should make the A'Prune algorithm more attractive for practical use in intelligent optical networks.展开更多
Orbital angular momentum(OAM) has gained interest due to its potential to increase capacity in optical communication systems as well as an additional domain for reconfigurable networks. This is due to the following:(i...Orbital angular momentum(OAM) has gained interest due to its potential to increase capacity in optical communication systems as well as an additional domain for reconfigurable networks. This is due to the following:(i) coaxially propagated OAM beams with different charges are mutually orthogonal,(ii) OAM beams can be efficiently multiplexed and demultiplexed, and(iii) OAM charges can be efficiently manipulated. Therefore, multiple data-carrying OAM beams could have the potential capability for reconfigurable optical switching and routing. In this paper, we discuss work involving reconfigurable OAM-based optical add/drop multiplexing, space switching,polarization switching, channel hopping, and multicasting.展开更多
We demonstrate the routing operation of optical packets by an optical packet switch consisting of an optical digital-to-analog conversion-type header processor, a wavelength converter using an electrically-tunable las...We demonstrate the routing operation of optical packets by an optical packet switch consisting of an optical digital-to-analog conversion-type header processor, a wavelength converter using an electrically-tunable laser, and an arrayed-waveguide grating router. A packet transfer by two-bit optical header was achieved for the first time.展开更多
A WDM compatible Edge-to-Edge Self-Routed optical packet switched network that simplifies the optical processing is proposed. The system employs all-optical packet label generation and recognition using coded superstr...A WDM compatible Edge-to-Edge Self-Routed optical packet switched network that simplifies the optical processing is proposed. The system employs all-optical packet label generation and recognition using coded superstructured Fiber Bragg gratings.展开更多
We demonstrate a polarization-insensitive silicon 4×4 optical switch based on Mach–Zehnder interferometer(MZI)switch elements.On-chip polarization controllers are integrated before the switch fabric to automatic...We demonstrate a polarization-insensitive silicon 4×4 optical switch based on Mach–Zehnder interferometer(MZI)switch elements.On-chip polarization controllers are integrated before the switch fabric to automatically adjust an arbitrary input polarization to the transverse electric mode.The 4×4 switch fabric is based on a dilated double-layer network architecture to completely cancel the first-order crosstalk.Thermo-optic phase shifters are integrated in the MZI switch elements and the polarization controllers for adjustment of the switching state and polarization,respectively.We develop a polarization control algorithm based on a gradient descent method for automated polarization control.The polarization recovery time is less than 4 ms,and the measured polarization-dependent loss is~2 d B.The scheme provides a new solution for realizing polarization-insensitive silicon optical switches.展开更多
基金supported by the National Natural Science Foundation of China(No.61675033,61575026,61675233)National High Technical Research and Development Program of China(No.2015AA015504)
文摘This paper introduces an ant colony routing and wavelength assignment algorithm based on cross-layer design(CL-ACRWA),which can overcome the adverse effects of Doppler wavelength shift on data transmission in optical satellite networks. Firstly, a cross-layer optimization model is built, which considers the Doppler wavelength shift, the transmission delay as well as wavelength-continuity constraint. Then an ant colony algorithm is utilized to solve the cross-layer optimization model, resulting in finding an optimal light path satisfying the above constraints for every connection request. The performance of CL-ACRWA is measured by the communication success probability, the convergence property and the transmission delay. Simulation results show that CL-ACRWA performs well in communication success probability and has good global search ability as well as fast convergence speed. Meanwhile, the transmission delay can meet the basic requirement of real-time transmission of business.
文摘An optical routing-switching technology based on optical switch array is proposed.The characteristics of the blocking and nonblocking networks are analyzed and compared,odd-even sorting network is used to realize optical routing-switching,relative routing-switching protocol is designed.Simulation test under load shows that it can reduce a blocking effectively and enhance an efficiency of switching.Further,it can transfer the processing and switching within parallel computer from electric domain to optical domain. It can make parallel computer coordinating computing and processing at much more higher speed, storing and transmitting even more efficiently.
文摘The issue of burst losses imposes a constraint on the development of Optical Burst Switching (OBS) networks. Heavy burst losses strongly affect the Quality of Service (QoS) intended by end users. This article presents a QoS aware Routing and Wavelength Allocation (RWA) technique for burst switching in OBS networks. The RWA problem is modeled as a bi-objective Integer Linear Programming (ILP) problem, where objective functions are based on minimizing the number of wavelengths used and the number of hops traversed to fulfill the burst transmission requests for a given set of node pairs. The ILP model is solved using a novel approach based on a Differential Evolution (DE) algorithm. Analytical results show that the DE algorithm provides a better performance compared to shortest path routing, which is a widely accepted routing strategy for OBS networks.
基金Supported by the National Natural Science Foundation of China(No.61675033,61575026,61675232,61571440)the National High Technology Research and Development Program of China(No.2015AA015504)
文摘In order to overcome the adverse effects of Doppler wavelength shift on data transmission in the optical satellite networks,a dynamic routing and wavelength assignment algorithm based on crosslayer design( CL-DRWA) is introduced which can improve robustness of the network. Above all,a cross-layer optimization model is designed,which considers transmission delay and wavelength-continuity constraint,as well as Doppler wavelength shift. Then CL-DRWA is applied to solve this model,resulting in finding an optimal light path satisfying the above constraints for every connection request. In CL-DRWA,Bellman-Ford method is used to find an optimal route and a distributed relative capacity loss method is implemented to get an optimal wavelength assignment result on the optimal route. Moreover,compared with the dynamic routing and wavelength assignment algorithm based on minimum delay strategy( MD-DRWA),CL-DRWA can make an improvement of 5. 3% on the communication success probability. Meanwhile,CL-DRWA can meet the requirement of transmission delay for real-time services.
基金supported by CAST Fund for Distinguished Young TalentsCASC Scientific and Technological Innovative Research and Design Projects
文摘Microwave transmission in a space network is greatly restricted due to precious radio spectrum resources. To meet the demand for large-bandwidth, global seamless coverage and on-demanding access, the Space All-Optical Network(SAON) becomes a promising paradigm. In this paper, the related space optical communications and network programs around the world are first briefly introduced. Then the intelligent Space All-Optical Network(i-SAON), which can be deemed as an advanced SAON, is illustrated, with the emphasis on its features of high survivability, sensing and reconfiguration intelligence, and large capacity for all optical load and switching. Moreover, some key technologies for i-SAON are described, including the rapid adjustment and control of the laser beam direction, the deep learning-based multi-path anti-fault routing, the intelligent multi-fault diagnosis and switching selection mechanism, and the artificial intelligence-based spectrum sensing and situational forecasting.
文摘The A'Prune quality of service (QoS) routing algorithm was proposed to compute K-shortest paths satisfying multiple QoS constraints, The A'Prune is considered to be one of the practical routing algorithms for intelligent optical networks because of its flexibility in handling many practical constraints, This article gives detailed performance studies of the algorithm through extensive simulation experiments. We found that both the running time and the memory space requirements of the algorithm are large, especially when the network size increases, in this article, we also propose an approach to improving the performance of the A'Prune algorithm. The improvements should make the A'Prune algorithm more attractive for practical use in intelligent optical networks.
基金Air Force Office of Scientific Research(AFOSR)FA9550-15-C-0024Defense Advanced Research Projects Agency(DARPA)+2 种基金National Science Foundation(NSF)ECCS-1509965)Nx Gen PartnersOffice of Naval Research(ONR)416678-G
文摘Orbital angular momentum(OAM) has gained interest due to its potential to increase capacity in optical communication systems as well as an additional domain for reconfigurable networks. This is due to the following:(i) coaxially propagated OAM beams with different charges are mutually orthogonal,(ii) OAM beams can be efficiently multiplexed and demultiplexed, and(iii) OAM charges can be efficiently manipulated. Therefore, multiple data-carrying OAM beams could have the potential capability for reconfigurable optical switching and routing. In this paper, we discuss work involving reconfigurable OAM-based optical add/drop multiplexing, space switching,polarization switching, channel hopping, and multicasting.
文摘We demonstrate the routing operation of optical packets by an optical packet switch consisting of an optical digital-to-analog conversion-type header processor, a wavelength converter using an electrically-tunable laser, and an arrayed-waveguide grating router. A packet transfer by two-bit optical header was achieved for the first time.
文摘A WDM compatible Edge-to-Edge Self-Routed optical packet switched network that simplifies the optical processing is proposed. The system employs all-optical packet label generation and recognition using coded superstructured Fiber Bragg gratings.
基金supported in part by the National Key Research and Development Program(Nos.2019YFB2203200,2019YFB1802903,and 2018YFB2201702)the National Natural Science Foundation of China(NSFC)(Nos.6207030193 and 62090052)+1 种基金the Shanghai Municipal Science and Technology Major Project(No.2017SHZDZX03)the Open Project Program of Wuhan National Laboratory for Optoelectronics(No.2019WNLOKF004)。
文摘We demonstrate a polarization-insensitive silicon 4×4 optical switch based on Mach–Zehnder interferometer(MZI)switch elements.On-chip polarization controllers are integrated before the switch fabric to automatically adjust an arbitrary input polarization to the transverse electric mode.The 4×4 switch fabric is based on a dilated double-layer network architecture to completely cancel the first-order crosstalk.Thermo-optic phase shifters are integrated in the MZI switch elements and the polarization controllers for adjustment of the switching state and polarization,respectively.We develop a polarization control algorithm based on a gradient descent method for automated polarization control.The polarization recovery time is less than 4 ms,and the measured polarization-dependent loss is~2 d B.The scheme provides a new solution for realizing polarization-insensitive silicon optical switches.