Optical thermometry as an important local temperature-sensing technique,has received increasing attention in scientific and industrial areas.However,it is still a big challenge to develop luminescent materials with se...Optical thermometry as an important local temperature-sensing technique,has received increasing attention in scientific and industrial areas.However,it is still a big challenge to develop luminescent materials with self-activated dual-wavelength emissions toward high-sensitivity optical thermometers.Herein,a novel ratiometric thermometric strategy of Bi^(3+)-activated dual-wavelength emission band was realized in the same lattice position with two local electronic states of La_(3)Sb_(1-x)Ta_xO_(7):Bi^(3+)(0≤x≤1.0)materials based on the different temperature-dependent emission behaviors,benefiting from the highlysensitive and regulable emission to the coordination environment of Bi^(3+).The structural and spectral results demonstrate that the emission tremendously shifted from green to blue with 68 nm and the intensity was enhanced 2.6 times.Especially,the visual dual-wavelength emitting from two emission centers was presented by increasing the Ta^(5+)substitution concentration to 20%or 25%,mainly originating from the two local electronic states around the Bi^(3+)emission center.Significantly,the dual-wavelength with different thermal-quenching performance provided high-temperature sensitivity and good discrimination signals for optical thermometry in the range between 303 and 493 K.The maximum relative sensitivity reached 2.64%/K(La_(3)Sb_(0.8)Ta_(0.2)O_(7):0.04Bi^(3+)@383 K)and 1.91%/K(La_(3)Sb_(0.75)Ta_(0.25)O_(7):0.04Bi^(3+)@388 K).This work reveals a rational design strategy of different local electronic states around the singledoping multiple emission centers towards practical applications,such as luminescence thermometry and white LED lighting.展开更多
A series of Bi^(3+)/Eu^(3+)co-doped Ca_(2)Ta_(2)O_(7)(CTO:Bi^(3+)/Eu^(3+))phosphors were prepared by high-temperature solid-state method for dual-emission center optical thermometers and white light-emitting diode(WLE...A series of Bi^(3+)/Eu^(3+)co-doped Ca_(2)Ta_(2)O_(7)(CTO:Bi^(3+)/Eu^(3+))phosphors were prepared by high-temperature solid-state method for dual-emission center optical thermometers and white light-emitting diode(WLED)device.By modulating the doping ratio of Bi^(3+)/Eu^(3+)and utilizing the energy transfer from Bi^(3+)to Eu^(3+),the tunable color emission ranging from green to reddish-orange was realized.The designed CTO:0.04Bi^(3+)/Eu^(3+)optical thermometers exhibit signifcant thermochromism,superior stability,and repeatability,with maximum sensitivities of Sa=0.055 K^(−1)(at 510 K)and Sr=1.298%K^(−1)(at 480 K)within the temperature range of 300−510 K,owing to the diferent thermal quenching behaviors between Bi^(3+)and Eu^(3+)ions.These features indicate the potential application prospects of the prepared samples in visualized thermometer or hightemperature safety marking.Furthermore,leveraging the excellent zero-thermal-quenching performance,outstanding acid/alkali resistance,and color stability of CTO:0.04Bi^(3+)/0.16Eu^(3+)phosphor,a WLED device with a high Ra value of 95.3 has been realized through its combination with commercially available blue and green phosphors,thereby demonstrating the potential application of CTO:0.04Bi^(3+)/0.16Eu^(3+)in near-UV pumped WLED devices.展开更多
In order to meet the needs of new materials gradually developing towards miniaturization,integration,and light weight,multifunctional BaNb_(2)O_(6):Yb^(3+)/Er^(3+)/Tm^(3+)transparent glass-ceramics were success-fully ...In order to meet the needs of new materials gradually developing towards miniaturization,integration,and light weight,multifunctional BaNb_(2)O_(6):Yb^(3+)/Er^(3+)/Tm^(3+)transparent glass-ceramics were success-fully prepared by melt quenching and controllable crystallization.Its structure,luminescence,and en-ergy transmission were studied.Using the opposite temperature dependence of the Tm^(3+)emission band and the corresponding large energy level gap,a maximum relative sensitivity of 2.3%K^(-1)based on thermal coupling levels(TCLs)is obtained in a wide temperature range(298-673 K).The multi-ratio optical thermometry based on TCLs and non-TCLs is successfully realized by using the different emission bands of double emission centers,which makes it possible for self-reference optical temperature measurement modes.In addition,the transparent glass-ceramic exhibits excellent electrical properties under 700 kV cm^(-1)electric field:high discharge energy density(W_(d)=0.99 J cm^(-3)),huge instantaneous power density(225.3 MW cm^(-3)),and ultra-fast discharge rate(T_(0.9)≤15.8 ns).The prepared glass-ceramic is expected to be a new type of lead-free multifunctional photoelectric material for temperature sensors and transparent electronic devices.展开更多
Zero-dimensional metal halide perovskites have captured intense research interest owing to their unique optoelectronic properties.Particularly,metal halides with the ns^(2) electronic configuration are of great intere...Zero-dimensional metal halide perovskites have captured intense research interest owing to their unique optoelectronic properties.Particularly,metal halides with the ns^(2) electronic configuration are of great interest owing to the high-temperature sensitivity of their photoluminescence,which could be applied to remote optical thermometry(ROT).Herein,all-inorganic and lead-free halide perovskite Te^(4+)-doped Cs_(2)InCl_(5)·H_(2)O single crystals(SCs)were prepared through the hydrothermal method and showed a strong temperature dependence of photoluminescence lifetime.Upon Te^(4+) doping,the nonemissive Cs_(2)InCl_(5)·H_(2)O SC exhibits a bright orange emission at 660 nm with a wide full width at half maximum of 180 nm.The strong phonon-exciton coupling promotes the formation of self-trapped excitons in the soft lattice of the zero-dimensional Te^(4+)-doped Cs_(2)InCl_(5)·H_(2)O SC.The Te^(4+) ions with the 5 s^(2) electronic configuration endow the Te^(4+)-doped Cs_(2)InCl_(5)·H_(2)O SC with a strong temperaturedependent photoluminescence lifetime.This SC reaches a maximum specific sensitivity of 0.062 K^(-1) at 320 K,thereby showing the potential advantages of indium-based metal halide perovskites in ROT applications.展开更多
In this research,a series of Sm^(3+) doped CsLu(WO_(4))_(2) phosphors was prepared via high temperature solid phase technique to design new red phosphors and optical thermometric materials.Their structures,morphology,...In this research,a series of Sm^(3+) doped CsLu(WO_(4))_(2) phosphors was prepared via high temperature solid phase technique to design new red phosphors and optical thermometric materials.Their structures,morphology,band gap and luminescence properties were characterized by X-ray diffraction,scanning electron microscopy,diffuse reflection and luminescence spectra,respectively.Under UV excitation,CsLu(WO_(4))_(2) gives rise to a blue broad emission band between 350 and 700 nm,which stems from the ^(3)T_(1u)→^(1)A_(1g) transition of WO_(6)^(6-) groups.When Sm^(3+) is introduced into CsLu(WO_(4))_(2),energy transfer between WO_(6)^(6-) groups and Sm^(3+) ions takes place in CsLu(WO_(4))_(2):Sm^(3+)phosphors,and color-tunable luminescence from blue to red is realized by controlling the Sm^(3+) doping concentration.The energy transfer efficiency between WO_(6)^(6-) groups and Sm^(3+) ons was analyzed,and the energy transfer mechanism was determined to be dipole-dipole interactions.According to the temperature-dependent luminescence spectra,WO_(6)^(6-)groups and Sm^(3+)ions exhibit large discrepancy in thermal quenching rates,and thus the temperature sensing properties of CsLu(WO_(4))_(2):Sm^(3+) in the temperature range of 283-403 K were analyzed.Based on the framework of fluorescence intensity ratio theory,the basic optical thermometry parameters including absolute and relative sensitivity of CsLu(WO_(4))_(2):Sm^(3+) we re calculated and the results show that it has great potential for application in optical thermometry.展开更多
Nd^(3+)-doped tellurite glasses are promising materials for thermometers based on the fluorescence intensity ratio(FIR)technique.Nevertheless,at high Nd^(3+)concentrations,energy transfer(ET)processes such as optical ...Nd^(3+)-doped tellurite glasses are promising materials for thermometers based on the fluorescence intensity ratio(FIR)technique.Nevertheless,at high Nd^(3+)concentrations,energy transfer(ET)processes such as optical reabsorption and cross-relaxation can affect the Nd^(3+)emission,which has been little explored in the literature.Therefore,the present work investigated the use of Nd^(3+)-doped tellurite glass(samples doped with Nd^(3+)at 0.2 mol%,0.5 mol%,2.0 mol%,and 4.0 mol%)in fluorescence thermometers,in the temperature range from 299 to 371 K.The results indicate a strong dependence of the FIR parameters on the Nd^(3+)concentration,due to changes in the emission band profiles caused by optical reabsorption of the Nd^(3+)emissions and cross-relaxation processes.A decrease of the relative sensitivity of the ratio^(4)F_(5/2)→^(4)I_(9/2)/^(4)F_(3/2)→^(4)I_(9/2)is observed for samples doped with higher amounts of Nd^(3+).The maximum relative sensitivity at 299 K is 3.00%/K,which is the highest value among the reported Nd^(3+)ions.展开更多
A novel non-contact optical thermometer,qualified with high sensitivity and temperature resolution,is urgently needed for temperature measuring of micro devices,moving objects and specific severe environments.Hence,a ...A novel non-contact optical thermometer,qualified with high sensitivity and temperature resolution,is urgently needed for temperature measuring of micro devices,moving objects and specific severe environments.Hence,a series of dual-emitting La_(5)Si_(2)BO_(13):Ce^(3+),Eu^(2+)phosphors were synthesized.The two ions show diverse responses with the changing in temperature.The variational emissions of Ce^(3+)and Eu^(2+)can be converted to FIR(fluorescence intensity ratio)signals.The maximal absolute sensitivity Sa and relative sensitivity Sr reach up to 0.07526%/K and 3.2241%/K,respectively.It is worthy noting that the Sa and Sr possess the same variation tendency and both have high values in the low temperature region(293-373 K),showing the great temperature measuring property especially in low temperature region.The temperature sensing characteristics are superior to the results of most previous reports.The energy transfer(ET)process is certified to occur from Ce^(3+)to Eu^(2+)ions.These studies indicate that La_(5)Si_(2)BO_(13):Ce^(3+),Eu^(2+)phosphor could have a good prospect for optical thermometry.展开更多
The Er3+doped double perovskite Ba_(2)CaWO_(6) crystal is a promising ratiometric thermometer based on the fluorescence intensity ratio(FIR) of transitions from ^(2)H_(11/2) and ^(4)S_(3/2) to the lowered ^(4)I_(15/2)...The Er3+doped double perovskite Ba_(2)CaWO_(6) crystal is a promising ratiometric thermometer based on the fluorescence intensity ratio(FIR) of transitions from ^(2)H_(11/2) and ^(4)S_(3/2) to the lowered ^(4)I_(15/2) level.However,the Ca^(2+) vacancy defect caused by the charge difference between rare-earth ions and the substituted alkaline-earth ions gives rise to the non-radiative probability and limits the thermal sensitivity.Here,the up-conversion luminescence and thermometric performance of Er^(3+),Yb^(3+) dopedBa_(2)CaWO_(6) are tuned by tri-doping with alkaline ions.The Ca^(2+) vacancy defect can be eliminated by the introduction of Na^(+),which occupies the Ca^(2+) site when it is doped into Ba_(2)CaWO_(6) with Er^(3+) and Yb^(3+).On the contrary,the doping of Cs^(+) into Ba_(2)CaWO_(6) with Er^(3+) and Yb^(3+) enhances the defect concentration because it occupies the site of Ba^(2+).Thus,the tri-doping of Na^(+) reduces the non-radiative probability and enhances the quantum efficiency of Er^(3+),leading to the improvement of the thermometric sensitivity of Ba_(2)CaWO_(6).As a result,we get an excellent thermometric Ba_(2)CaWO_(6):8%Yb^(3+),3.5%Er^(3+),6%Na^(+) powder with a luminescence lifetime of 515 μs and maximum thermal sensitivity(S_(r)) of 1.45%/K,which is more than three times higher than that of the BCWO:Er^(3+) powder.展开更多
YBO3:2 at.% Eu3+ was prepared by the solid state reaction and its temperature dependent luminescence was investigated for possible applications in temperature sensing. Phase composition of this material was confirme...YBO3:2 at.% Eu3+ was prepared by the solid state reaction and its temperature dependent luminescence was investigated for possible applications in temperature sensing. Phase composition of this material was confirmed by X-ray powder diffraction analysis and excitation and emission spectra were also provided. Under excitation of 355 nm, the fluorescence originating from 5D0 and 5D1 states varied as the temperature rose in a region from 333 to 773 K. The fluorescence intensity ratio (FIR) of SD0 and 5D1 was investigated which increased significantly with the rise of temperature. The maximal relative sensitivity in the whole temperature range was 1.8% K-1(at 333 K). The results recommended YBO3:Eu3+ as a new material of the FIR method for non-contact optical thermometry.展开更多
Eu^(2+)/Sm^(3+)co-doped dual-emitting Sr_(4)La(PO_(4))_(3)O phosphors were synthesized through a convenient high temperature solid state reaction in reductive atmosphere.The structure,luminescence,energy transfer and ...Eu^(2+)/Sm^(3+)co-doped dual-emitting Sr_(4)La(PO_(4))_(3)O phosphors were synthesized through a convenient high temperature solid state reaction in reductive atmosphere.The structure,luminescence,energy transfer and temperature-dependent luminescence properties of Eu^(2+)/Sm^(3+)co-doped Sr_(4)La(PO_(4))_(3)O phosphors were researched and analyzed in detail.The blue emission of Eu^(2+)and the red emission of Sm^(3+)can work together as FIR signals.Based on the different response characteristics of these two ion emissions to temperature,Sr_(4)La(PO_(4))_(3)O:Eu^(2+)/Sm^(^(3+))phosphor achieves the relative sensitivity of0.48384%/K and a wide range of temperature measurements from room temperature to 573 K.The results reveal that the Sr_(4)La(PO_(4))_(3)O:Eu^(2+)/Sm^(3+)phosphor has application prospect in the field of high temperature optical thermometry.The energy transfer mechanism is proved to be the dipole-dipole interaction between Eu^(2+)and Sm^(3+)ions.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52072101,51972088,52172205)the Fundamental Research Funds for the Provincial Universities of Zhejiang(No.GK229909299001-003)the Postgraduate Research Innovation Fund of Hangzhou Dianzi University(No.CXJJ2022032)。
文摘Optical thermometry as an important local temperature-sensing technique,has received increasing attention in scientific and industrial areas.However,it is still a big challenge to develop luminescent materials with self-activated dual-wavelength emissions toward high-sensitivity optical thermometers.Herein,a novel ratiometric thermometric strategy of Bi^(3+)-activated dual-wavelength emission band was realized in the same lattice position with two local electronic states of La_(3)Sb_(1-x)Ta_xO_(7):Bi^(3+)(0≤x≤1.0)materials based on the different temperature-dependent emission behaviors,benefiting from the highlysensitive and regulable emission to the coordination environment of Bi^(3+).The structural and spectral results demonstrate that the emission tremendously shifted from green to blue with 68 nm and the intensity was enhanced 2.6 times.Especially,the visual dual-wavelength emitting from two emission centers was presented by increasing the Ta^(5+)substitution concentration to 20%or 25%,mainly originating from the two local electronic states around the Bi^(3+)emission center.Significantly,the dual-wavelength with different thermal-quenching performance provided high-temperature sensitivity and good discrimination signals for optical thermometry in the range between 303 and 493 K.The maximum relative sensitivity reached 2.64%/K(La_(3)Sb_(0.8)Ta_(0.2)O_(7):0.04Bi^(3+)@383 K)and 1.91%/K(La_(3)Sb_(0.75)Ta_(0.25)O_(7):0.04Bi^(3+)@388 K).This work reveals a rational design strategy of different local electronic states around the singledoping multiple emission centers towards practical applications,such as luminescence thermometry and white LED lighting.
基金the fnancial support of Innovative Research Team of Ningde Normal University(No.2023T03)the Natural Science Foundation of Fujian Province(No.2021J011149)Fujian Provincial Department of Education(No.JAT210469,JAT220282).
文摘A series of Bi^(3+)/Eu^(3+)co-doped Ca_(2)Ta_(2)O_(7)(CTO:Bi^(3+)/Eu^(3+))phosphors were prepared by high-temperature solid-state method for dual-emission center optical thermometers and white light-emitting diode(WLED)device.By modulating the doping ratio of Bi^(3+)/Eu^(3+)and utilizing the energy transfer from Bi^(3+)to Eu^(3+),the tunable color emission ranging from green to reddish-orange was realized.The designed CTO:0.04Bi^(3+)/Eu^(3+)optical thermometers exhibit signifcant thermochromism,superior stability,and repeatability,with maximum sensitivities of Sa=0.055 K^(−1)(at 510 K)and Sr=1.298%K^(−1)(at 480 K)within the temperature range of 300−510 K,owing to the diferent thermal quenching behaviors between Bi^(3+)and Eu^(3+)ions.These features indicate the potential application prospects of the prepared samples in visualized thermometer or hightemperature safety marking.Furthermore,leveraging the excellent zero-thermal-quenching performance,outstanding acid/alkali resistance,and color stability of CTO:0.04Bi^(3+)/0.16Eu^(3+)phosphor,a WLED device with a high Ra value of 95.3 has been realized through its combination with commercially available blue and green phosphors,thereby demonstrating the potential application of CTO:0.04Bi^(3+)/0.16Eu^(3+)in near-UV pumped WLED devices.
基金This work was financially supported by the National Natural Science Foundation of China(No.61865003)Project of Guangxi Key Laboratory of Information Materials(No.211009-Z).
文摘In order to meet the needs of new materials gradually developing towards miniaturization,integration,and light weight,multifunctional BaNb_(2)O_(6):Yb^(3+)/Er^(3+)/Tm^(3+)transparent glass-ceramics were success-fully prepared by melt quenching and controllable crystallization.Its structure,luminescence,and en-ergy transmission were studied.Using the opposite temperature dependence of the Tm^(3+)emission band and the corresponding large energy level gap,a maximum relative sensitivity of 2.3%K^(-1)based on thermal coupling levels(TCLs)is obtained in a wide temperature range(298-673 K).The multi-ratio optical thermometry based on TCLs and non-TCLs is successfully realized by using the different emission bands of double emission centers,which makes it possible for self-reference optical temperature measurement modes.In addition,the transparent glass-ceramic exhibits excellent electrical properties under 700 kV cm^(-1)electric field:high discharge energy density(W_(d)=0.99 J cm^(-3)),huge instantaneous power density(225.3 MW cm^(-3)),and ultra-fast discharge rate(T_(0.9)≤15.8 ns).The prepared glass-ceramic is expected to be a new type of lead-free multifunctional photoelectric material for temperature sensors and transparent electronic devices.
基金supported by the National Natural Science Foundation of China(U2001214)the Natural Science Foundation of Guangdong Province(2019B1515120050)the Fundamental Research Funds for the Central Universities。
文摘Zero-dimensional metal halide perovskites have captured intense research interest owing to their unique optoelectronic properties.Particularly,metal halides with the ns^(2) electronic configuration are of great interest owing to the high-temperature sensitivity of their photoluminescence,which could be applied to remote optical thermometry(ROT).Herein,all-inorganic and lead-free halide perovskite Te^(4+)-doped Cs_(2)InCl_(5)·H_(2)O single crystals(SCs)were prepared through the hydrothermal method and showed a strong temperature dependence of photoluminescence lifetime.Upon Te^(4+) doping,the nonemissive Cs_(2)InCl_(5)·H_(2)O SC exhibits a bright orange emission at 660 nm with a wide full width at half maximum of 180 nm.The strong phonon-exciton coupling promotes the formation of self-trapped excitons in the soft lattice of the zero-dimensional Te^(4+)-doped Cs_(2)InCl_(5)·H_(2)O SC.The Te^(4+) ions with the 5 s^(2) electronic configuration endow the Te^(4+)-doped Cs_(2)InCl_(5)·H_(2)O SC with a strong temperaturedependent photoluminescence lifetime.This SC reaches a maximum specific sensitivity of 0.062 K^(-1) at 320 K,thereby showing the potential advantages of indium-based metal halide perovskites in ROT applications.
基金Project supported by the Natural Science Foundation (NSF)of Anhui Province (2108085MB53)the NSF for Distinguished Young Scholars of Anhui University (2022AH020087)University NSF of Anhui Province(KJ2020A0647)。
文摘In this research,a series of Sm^(3+) doped CsLu(WO_(4))_(2) phosphors was prepared via high temperature solid phase technique to design new red phosphors and optical thermometric materials.Their structures,morphology,band gap and luminescence properties were characterized by X-ray diffraction,scanning electron microscopy,diffuse reflection and luminescence spectra,respectively.Under UV excitation,CsLu(WO_(4))_(2) gives rise to a blue broad emission band between 350 and 700 nm,which stems from the ^(3)T_(1u)→^(1)A_(1g) transition of WO_(6)^(6-) groups.When Sm^(3+) is introduced into CsLu(WO_(4))_(2),energy transfer between WO_(6)^(6-) groups and Sm^(3+) ions takes place in CsLu(WO_(4))_(2):Sm^(3+)phosphors,and color-tunable luminescence from blue to red is realized by controlling the Sm^(3+) doping concentration.The energy transfer efficiency between WO_(6)^(6-) groups and Sm^(3+) ons was analyzed,and the energy transfer mechanism was determined to be dipole-dipole interactions.According to the temperature-dependent luminescence spectra,WO_(6)^(6-)groups and Sm^(3+)ions exhibit large discrepancy in thermal quenching rates,and thus the temperature sensing properties of CsLu(WO_(4))_(2):Sm^(3+) in the temperature range of 283-403 K were analyzed.Based on the framework of fluorescence intensity ratio theory,the basic optical thermometry parameters including absolute and relative sensitivity of CsLu(WO_(4))_(2):Sm^(3+) we re calculated and the results show that it has great potential for application in optical thermometry.
基金Project supported by National Council for Scientific and Technological Development(CNPq)(#305067/2019-2,#303707/2022-4,#306452/2018-9)the Development of Education and Science and Technology of the State of Mato Grosso do Sul(FUNDECT)(#59/300.634/2016,#71/027.247/2022)。
文摘Nd^(3+)-doped tellurite glasses are promising materials for thermometers based on the fluorescence intensity ratio(FIR)technique.Nevertheless,at high Nd^(3+)concentrations,energy transfer(ET)processes such as optical reabsorption and cross-relaxation can affect the Nd^(3+)emission,which has been little explored in the literature.Therefore,the present work investigated the use of Nd^(3+)-doped tellurite glass(samples doped with Nd^(3+)at 0.2 mol%,0.5 mol%,2.0 mol%,and 4.0 mol%)in fluorescence thermometers,in the temperature range from 299 to 371 K.The results indicate a strong dependence of the FIR parameters on the Nd^(3+)concentration,due to changes in the emission band profiles caused by optical reabsorption of the Nd^(3+)emissions and cross-relaxation processes.A decrease of the relative sensitivity of the ratio^(4)F_(5/2)→^(4)I_(9/2)/^(4)F_(3/2)→^(4)I_(9/2)is observed for samples doped with higher amounts of Nd^(3+).The maximum relative sensitivity at 299 K is 3.00%/K,which is the highest value among the reported Nd^(3+)ions.
基金Project supported by Natural Science Foundation of Zhejiang Province,China(LY19E020005)Science and Technology Innovation Platform and Talent Plan of Zhejiang(2017R52037)。
文摘A novel non-contact optical thermometer,qualified with high sensitivity and temperature resolution,is urgently needed for temperature measuring of micro devices,moving objects and specific severe environments.Hence,a series of dual-emitting La_(5)Si_(2)BO_(13):Ce^(3+),Eu^(2+)phosphors were synthesized.The two ions show diverse responses with the changing in temperature.The variational emissions of Ce^(3+)and Eu^(2+)can be converted to FIR(fluorescence intensity ratio)signals.The maximal absolute sensitivity Sa and relative sensitivity Sr reach up to 0.07526%/K and 3.2241%/K,respectively.It is worthy noting that the Sa and Sr possess the same variation tendency and both have high values in the low temperature region(293-373 K),showing the great temperature measuring property especially in low temperature region.The temperature sensing characteristics are superior to the results of most previous reports.The energy transfer(ET)process is certified to occur from Ce^(3+)to Eu^(2+)ions.These studies indicate that La_(5)Si_(2)BO_(13):Ce^(3+),Eu^(2+)phosphor could have a good prospect for optical thermometry.
基金Project supported by the National Natural Science Foundation of China (51972061,22109025,22171045,52072076)。
文摘The Er3+doped double perovskite Ba_(2)CaWO_(6) crystal is a promising ratiometric thermometer based on the fluorescence intensity ratio(FIR) of transitions from ^(2)H_(11/2) and ^(4)S_(3/2) to the lowered ^(4)I_(15/2) level.However,the Ca^(2+) vacancy defect caused by the charge difference between rare-earth ions and the substituted alkaline-earth ions gives rise to the non-radiative probability and limits the thermal sensitivity.Here,the up-conversion luminescence and thermometric performance of Er^(3+),Yb^(3+) dopedBa_(2)CaWO_(6) are tuned by tri-doping with alkaline ions.The Ca^(2+) vacancy defect can be eliminated by the introduction of Na^(+),which occupies the Ca^(2+) site when it is doped into Ba_(2)CaWO_(6) with Er^(3+) and Yb^(3+).On the contrary,the doping of Cs^(+) into Ba_(2)CaWO_(6) with Er^(3+) and Yb^(3+) enhances the defect concentration because it occupies the site of Ba^(2+).Thus,the tri-doping of Na^(+) reduces the non-radiative probability and enhances the quantum efficiency of Er^(3+),leading to the improvement of the thermometric sensitivity of Ba_(2)CaWO_(6).As a result,we get an excellent thermometric Ba_(2)CaWO_(6):8%Yb^(3+),3.5%Er^(3+),6%Na^(+) powder with a luminescence lifetime of 515 μs and maximum thermal sensitivity(S_(r)) of 1.45%/K,which is more than three times higher than that of the BCWO:Er^(3+) powder.
基金supported by the National Key Research and Development Program of China(2021YFE0105700)the National Natural Science Foundation of China(52302177 and 51972118)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01X137)。
基金Project supported by the National Key Basic Research Program of China(2013CB921800)the National Natural Science Foundation of China(11374291,11204292,11274299 and 11311120047)the Fundamental Research Funds for the Central Universities(WK2030020021)
文摘YBO3:2 at.% Eu3+ was prepared by the solid state reaction and its temperature dependent luminescence was investigated for possible applications in temperature sensing. Phase composition of this material was confirmed by X-ray powder diffraction analysis and excitation and emission spectra were also provided. Under excitation of 355 nm, the fluorescence originating from 5D0 and 5D1 states varied as the temperature rose in a region from 333 to 773 K. The fluorescence intensity ratio (FIR) of SD0 and 5D1 was investigated which increased significantly with the rise of temperature. The maximal relative sensitivity in the whole temperature range was 1.8% K-1(at 333 K). The results recommended YBO3:Eu3+ as a new material of the FIR method for non-contact optical thermometry.
基金Project supported by Natural Science Foundation of Zhejiang Province,China(LY19E020005)Science and Technology Innovation Platform and Talent Plan of Zhejiang(2017R52037)。
文摘Eu^(2+)/Sm^(3+)co-doped dual-emitting Sr_(4)La(PO_(4))_(3)O phosphors were synthesized through a convenient high temperature solid state reaction in reductive atmosphere.The structure,luminescence,energy transfer and temperature-dependent luminescence properties of Eu^(2+)/Sm^(3+)co-doped Sr_(4)La(PO_(4))_(3)O phosphors were researched and analyzed in detail.The blue emission of Eu^(2+)and the red emission of Sm^(3+)can work together as FIR signals.Based on the different response characteristics of these two ion emissions to temperature,Sr_(4)La(PO_(4))_(3)O:Eu^(2+)/Sm^(^(3+))phosphor achieves the relative sensitivity of0.48384%/K and a wide range of temperature measurements from room temperature to 573 K.The results reveal that the Sr_(4)La(PO_(4))_(3)O:Eu^(2+)/Sm^(3+)phosphor has application prospect in the field of high temperature optical thermometry.The energy transfer mechanism is proved to be the dipole-dipole interaction between Eu^(2+)and Sm^(3+)ions.