The explosive increase in data traffic requires networks to provide higher capacity and long-haul transmission capabilities.This paper introduces new results on high-order modulation and efficient Digital Signal Proce...The explosive increase in data traffic requires networks to provide higher capacity and long-haul transmission capabilities.This paper introduces new results on high-order modulation and efficient Digital Signal Processing algorithms to reduce various transmission limitations in coherent receiving systems.Polarization Division Multiplexed Quadrature Phase Shift Keying(PDM-QPSK)is deployed to reach high bit rates,provides modified digital clock recovery,and allows BER-Aided Constant Modulus Algorithm(BA-CMA)equalising.A Soft Decision-Forward Error Correction(SD-FEC)algorithm and a joint scheme with timing recovery and adaptive equaliser are used to achieve better performance.A compact coherent transceiver is also developed.These techniques have been applied in the largest 100 G Optical Transport Network(OTN)deployment in the world,the backbone expansion project for Phase 3 of the China Education and Research Network(CERNET),with a total transmission length of 10 000 km.展开更多
A power-aware transceiver for half-duplex bidirectional chip-to-chip optical interconnects has been designed and fabricated in a 0.13 μm complementary metal-oxide-semiconductor (CMOS) technology. The transceiver ca...A power-aware transceiver for half-duplex bidirectional chip-to-chip optical interconnects has been designed and fabricated in a 0.13 μm complementary metal-oxide-semiconductor (CMOS) technology. The transceiver can detect the presence and absence of received signals and saves 55% power in Rx enabled mode and 45% in Tx enabled mode. The chip occupies an area of 1.034 mm2 and achieves a 3-dB bandwidth of 6 GHz and 7 GHz in Tx and Rx modes, respectively. The disabled outputs for the Tx and Rx modes are isolated with 180 dB and 139 dB, respectively, from the enabled outputs. Clear eye diagrams are obtained at 4.25 Gbps for both the Tx and Rx modes.展开更多
In recent decades,silicon photonics has attracted much attention in telecom and data-com areas.Constituted of high refractive-index contrast waveguides on silicon-on-insulator(SOI),a variety of integrated photonic pas...In recent decades,silicon photonics has attracted much attention in telecom and data-com areas.Constituted of high refractive-index contrast waveguides on silicon-on-insulator(SOI),a variety of integrated photonic passive and active devices have been implemented supported by excellent optical properties of silicon in the mid-infrared spectrum.The main advantage of the silicon photonics is the ability to use complementary metal oxide semiconductor(CMOS)process-compatible fabrication technologies,resulting in high-volume production at low cost.On the other hand,explosively growing traffic in the telecom,data center and high-performance computer demands the data flow to have high speed,wide bandwidth,low cost,and high energy-efficiency,as well as the photonics and electronics to be integrated for ultra-fast data transfer in networks.In practical applications,silicon photonics started with optical interconnect transceivers in the data-com first,and has been now extended to innovative applications such as multi-port optical switches in the telecom network node and integrated optical phased arrays(OPAs)in light detection and ranging(LiDAR).This paper overviews the progresses of silicon photonics from four points reflecting the recent advances mentioned above.CMOS-based silicon photonic platform technologies,applications to optical transceiver in the data-com network,applications to multi-port optical switches in the telecom network and applications to OPA in LiDAR system.展开更多
In this Letter, a pair of integrated optoelectronic transceiving chips is proposed. They are constructed by integrating a vertical cavity surface emitting laser unit above a positive-intrinsic-negative photodetector u...In this Letter, a pair of integrated optoelectronic transceiving chips is proposed. They are constructed by integrating a vertical cavity surface emitting laser unit above a positive-intrinsic-negative photodetector unit. One of the transceiving chips emits light at the wavelength of 848.1 nm with a threshold current of 0.8 mA and a slope efficiency of 0.81 W/A. It receives light between 801 and 814 nm with a quantum efficiency of higher than 70%. On its counterpart, the other one of the transceiving chips emits light at the wavelength of 805.3 nm with a threshold current of 1.1 mA and a slope efficiency of 0.86 W/A. It receives light between 838 and 855 nm with a quantum efficiency of higher than 70%. The proposed pair of integrated optoelectronic transceiving chips can work full-duplex with each other, and they can be applied to single fiber bidirectional optical interconnects.展开更多
基金supported by the National Natural Science Foundation of China under Grant No. 60932004the National High Technical Research and Development Program of China (863 Program) under Grants No. 2012AA011301,No. 2012AA011303
文摘The explosive increase in data traffic requires networks to provide higher capacity and long-haul transmission capabilities.This paper introduces new results on high-order modulation and efficient Digital Signal Processing algorithms to reduce various transmission limitations in coherent receiving systems.Polarization Division Multiplexed Quadrature Phase Shift Keying(PDM-QPSK)is deployed to reach high bit rates,provides modified digital clock recovery,and allows BER-Aided Constant Modulus Algorithm(BA-CMA)equalising.A Soft Decision-Forward Error Correction(SD-FEC)algorithm and a joint scheme with timing recovery and adaptive equaliser are used to achieve better performance.A compact coherent transceiver is also developed.These techniques have been applied in the largest 100 G Optical Transport Network(OTN)deployment in the world,the backbone expansion project for Phase 3 of the China Education and Research Network(CERNET),with a total transmission length of 10 000 km.
基金Project supported by the IT R&D Program of MKE/KEIT[No.10039230,Development of bidirectional 40 Gbps optical link module with low power in Green Data Centre for Smart Working Environment]the Center for Integrated Smart Sensors funded by the Ministry of Education,Science and Technology as Global Frontier Project(No.CISS-2012366054191)
文摘A power-aware transceiver for half-duplex bidirectional chip-to-chip optical interconnects has been designed and fabricated in a 0.13 μm complementary metal-oxide-semiconductor (CMOS) technology. The transceiver can detect the presence and absence of received signals and saves 55% power in Rx enabled mode and 45% in Tx enabled mode. The chip occupies an area of 1.034 mm2 and achieves a 3-dB bandwidth of 6 GHz and 7 GHz in Tx and Rx modes, respectively. The disabled outputs for the Tx and Rx modes are isolated with 180 dB and 139 dB, respectively, from the enabled outputs. Clear eye diagrams are obtained at 4.25 Gbps for both the Tx and Rx modes.
文摘In recent decades,silicon photonics has attracted much attention in telecom and data-com areas.Constituted of high refractive-index contrast waveguides on silicon-on-insulator(SOI),a variety of integrated photonic passive and active devices have been implemented supported by excellent optical properties of silicon in the mid-infrared spectrum.The main advantage of the silicon photonics is the ability to use complementary metal oxide semiconductor(CMOS)process-compatible fabrication technologies,resulting in high-volume production at low cost.On the other hand,explosively growing traffic in the telecom,data center and high-performance computer demands the data flow to have high speed,wide bandwidth,low cost,and high energy-efficiency,as well as the photonics and electronics to be integrated for ultra-fast data transfer in networks.In practical applications,silicon photonics started with optical interconnect transceivers in the data-com first,and has been now extended to innovative applications such as multi-port optical switches in the telecom network node and integrated optical phased arrays(OPAs)in light detection and ranging(LiDAR).This paper overviews the progresses of silicon photonics from four points reflecting the recent advances mentioned above.CMOS-based silicon photonic platform technologies,applications to optical transceiver in the data-com network,applications to multi-port optical switches in the telecom network and applications to OPA in LiDAR system.
基金supported by the Fund of State Key Laboratory of Information Photonics and Optical Communications(No.IPOC2016ZT10)the National Natural Science Foundation of China(Nos.61574019,61674020,and 61674018)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20130005130001)the 111 Project(No.B07005)
文摘In this Letter, a pair of integrated optoelectronic transceiving chips is proposed. They are constructed by integrating a vertical cavity surface emitting laser unit above a positive-intrinsic-negative photodetector unit. One of the transceiving chips emits light at the wavelength of 848.1 nm with a threshold current of 0.8 mA and a slope efficiency of 0.81 W/A. It receives light between 801 and 814 nm with a quantum efficiency of higher than 70%. On its counterpart, the other one of the transceiving chips emits light at the wavelength of 805.3 nm with a threshold current of 1.1 mA and a slope efficiency of 0.86 W/A. It receives light between 838 and 855 nm with a quantum efficiency of higher than 70%. The proposed pair of integrated optoelectronic transceiving chips can work full-duplex with each other, and they can be applied to single fiber bidirectional optical interconnects.