Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts ...Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts and restore texture completely in OCT images.We proposed a deep learning-based inpainting method of saturation artifacts in this paper.The generation mechanism of saturation artifacts was analyzed,and experimental and simulated datasets were built based on the mechanism.Enhanced super-resolution generative adversarial networks were trained by the clear–saturated phantom image pairs.The perfect reconstructed results of experimental zebrafish and thyroid OCT images proved its feasibility,strong generalization,and robustness.展开更多
Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since...Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.展开更多
We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase lockin...We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase locking loop in the conventional active phase control scheme,the passive phase noise cancellation is realized by feeding double-trip beat-note frequency to the driver of the acoustic optical modulator at the local site.This passive scheme exhibits fine robustness and reliability,making it suitable for long-distance and noisy fiber links.An optical regeneration station is used in the link for signal amplification and cascaded transmission.The phase noise cancellation and transfer instability of the 972-km link is investigated,and transfer instability of 1.1×10^(-19)at 10^(4)s is achieved.This work provides a promising method for realizing optical frequency distribution over thousands of kilometers by using fiber links.展开更多
We show that an optical transparency can be obtained by using only one single magneto-optical ring resonator. This effect is based on the splitting of counterclockwise and clockwise modes in the ring resonator. Within...We show that an optical transparency can be obtained by using only one single magneto-optical ring resonator. This effect is based on the splitting of counterclockwise and clockwise modes in the ring resonator. Within a proposed resonator-waveguide configuration the superposition between the two degeneracy broken modes produces a transparency window,which can be closed, open, and modified by tuning the applied magnetic field. This phenomenon is an analogue of Autler–Townes splitting, and the magnetic field is equivalent to the strong external pump field. We provide a theoretic analysis on the induced transparency, and numerically demonstrate the effect using full-wave simulation. Feasible implication of this effect and its potential applications are also discussed.展开更多
AIM:To compare the three-dimensional choroidal vascularity index(CVI)and choroidal thickness between fellow eyes of acute primary angle-closure(F-APAC)and chronic primary angle-closure glaucoma(F-CPACG)and the eyes of...AIM:To compare the three-dimensional choroidal vascularity index(CVI)and choroidal thickness between fellow eyes of acute primary angle-closure(F-APAC)and chronic primary angle-closure glaucoma(F-CPACG)and the eyes of normal controls.METHODS:This study included 37 patients with unilateral APAC,37 with asymmetric CPACG without prior treatment,and 36 healthy participants.Using swept-source optical coherence tomography(SS-OCT),the macular and peripapillary choroidal thickness and three-dimensional CVI were measured and compared globally and sectorally.Pearson’s correlation analysis and multivariate regression models were used to evaluate choroidal thickness or CVI with related factors.RESULTS:The mean subfoveal CVIs were 0.35±0.10,0.33±0.09,and 0.29±0.04,and the mean subfoveal choroidal thickness were 315.62±52.92,306.22±59.29,and 262.69±45.55μm in the F-APAC,F-CPACG,and normal groups,respectively.All macular sectors showed significantly higher CVIs and choroidal thickness in the F-APAC and F-CPACG eyes than in the normal eyes(P<0.05),while there were no significant differences between the F-APAC and F-CPACG eyes.In the peripapillary region,the mean overall CVIs were 0.21±0.08,0.20±0.08,and 0.19±0.05,and the mean overall choroidal thickness were 180.45±54.18,174.82±50.67,and 176.18±37.94μm in the F-APAC,F-CPACG,and normal groups,respectively.There were no significant differences between any of the two groups in all peripapillary sectors.Younger age,shorter axial length,and the F-APAC or F-CPACG diagnosis were significantly associated with higher subfoveal CVI and thicker subfoveal choroidal thickness(P<0.05).CONCLUSION:The fellow eyes of unilateral APAC or asymmetric CPACG have higher macular CVI and choroidal thickness than those of the normal controls.Neither CVI nor choroidal thickness can distinguish between eyes predisposed to APAC or CPACG.A thicker choroid with a higher vascular volume may play a role in the pathogenesis of primary angle-closure glaucoma.展开更多
In this work,we present an intravascular dual-mode endoscopic system capable of both intravascular photoacoustic imaging(IVPAI)and intravascular optical coherence tomography(IVOCT)for recognizing spontaneous coronary ...In this work,we present an intravascular dual-mode endoscopic system capable of both intravascular photoacoustic imaging(IVPAI)and intravascular optical coherence tomography(IVOCT)for recognizing spontaneous coronary artery dissection(SCAD)phantoms.IVPAI provides high-resolution and high-penetration images of intramural hematoma(IMH)at different depths,so it is especially useful for imaging deep blood clots associated with imaging phantoms.IVOCT can readily visualize the double-lumen morphology of blood vessel walls to identify intimal tears.We also demonstrate the capability of this dual-mode endoscopic system using mimicking phantoms and biological samples of blood clots in ex vivo porcine arteries.The results of the experiments indicate that the combined IVPAI and IVOCT technique has the potential to provide a more accurate SCAD assessment method for clinical applications.展开更多
We construct a power enhancement cavity to form an optical lattice in an ytterbium optical clock.It is demonstrated that the intra-cavity lattice power can be increased by about 45 times,and the trap depth can be as l...We construct a power enhancement cavity to form an optical lattice in an ytterbium optical clock.It is demonstrated that the intra-cavity lattice power can be increased by about 45 times,and the trap depth can be as large as 1400Er when laser light with a power of only 0.6 W incident to the lattice cavity.Such high trap depths are the key to accurate evaluation of the lattice-induced light shift with an uncertainty down to~1×10-18.By probing the ytterbium atoms trapped in the power-enhanced optical lattice,we obtain a 4.3 Hz-linewidth Rabi spectrum,which is then used to feedback to the clock laser for the close loop operation of the optical lattice clock.We evaluate the density shift of the Yb optical lattice clock based on interleaving measurements,which is-0.46(62)mHz.This result is smaller compared to the density shift of our first Yb optical clock without lattice power enhancement cavity mainly due to a larger lattice diameter of 344μm.展开更多
In recent years,space-division multiplexing(SDM)technology,which involves transmitting data information on multiple parallel channels for efficient capacity scaling,has been widely used in fiber and free-space optical...In recent years,space-division multiplexing(SDM)technology,which involves transmitting data information on multiple parallel channels for efficient capacity scaling,has been widely used in fiber and free-space optical communication sys-tems.To enable flexible data management and cope with the mixing between different channels,the integrated reconfig-urable optical processor is used for optical switching and mitigating the channel crosstalk.However,efficient online train-ing becomes intricate and challenging,particularly when dealing with a significant number of channels.Here we use the stochastic parallel gradient descent(SPGD)algorithm to configure the integrated optical processor,which has less com-putation than the traditional gradient descent(GD)algorithm.We design and fabricate a 6×6 on-chip optical processor on silicon platform to implement optical switching and descrambling assisted by the online training with the SPDG algorithm.Moreover,we apply the on-chip processor configured by the SPGD algorithm to optical communications for optical switching and efficiently mitigating the channel crosstalk in SDM systems.In comparison with the traditional GD al-gorithm,it is found that the SPGD algorithm features better performance especially when the scale of matrix is large,which means it has the potential to optimize large-scale optical matrix computation acceleration chips.展开更多
Two types of one-dimensional(1D)anti-PT-symmetric periodic ring optical waveguide networks,consisting of gain and loss materials,are constructed.The singular optical propagation properties of these networks are invest...Two types of one-dimensional(1D)anti-PT-symmetric periodic ring optical waveguide networks,consisting of gain and loss materials,are constructed.The singular optical propagation properties of these networks are investigated.The results show that the system composed of gain materials exhibits characteristics of ultra-strong transmission and bidirectional reflection.Conversely,the system composed of loss materials demonstrates equal transmittance and reflectance at some frequencies.In both the systems,a new type of total reflection phenomenon is observed.When the imaginary part of the refractive indices of waveguide segments is smaller than 10-5,the system shows bidirectional transparency with the transmittance tending to be 1 and reflectivity to be smaller than 10-8 at some bands.When the refractive indices of the waveguide segments are real,the system will be bidirectional transparent at the full band.These findings may deepen the understanding of anti-PT-symmetric optical systems and optical waveguide networks,and possess potential applications in efficient optical energy storage,ultra-sensitive optical filters,ultra-sensitive all-optical switches,integrated optical chips,stealth physics,and so on.展开更多
The issue of opacity within data-driven artificial intelligence(AI)algorithms has become an impediment to these algorithms’extensive utilization,especially within sensitive domains concerning health,safety,and high p...The issue of opacity within data-driven artificial intelligence(AI)algorithms has become an impediment to these algorithms’extensive utilization,especially within sensitive domains concerning health,safety,and high profitability,such as chemical engineering(CE).In order to promote reliable AI utilization in CE,this review discusses the concept of transparency within AI utilizations,which is defined based on both explainable AI(XAI)concepts and key features from within the CE field.This review also highlights the requirements of reliable AI from the aspects of causality(i.e.,the correlations between the predictions and inputs of an AI),explainability(i.e.,the operational rationales of the workflows),and informativeness(i.e.,the mechanistic insights of the investigating systems).Related techniques are evaluated together with state-of-the-art applications to highlight the significance of establishing reliable AI applications in CE.Furthermore,a comprehensive transparency analysis case study is provided as an example to enhance understanding.Overall,this work provides a thorough discussion of this subject matter in a way that—for the first time—is particularly geared toward chemical engineers in order to raise awareness of responsible AI utilization.With this vital missing link,AI is anticipated to serve as a novel and powerful tool that can tremendously aid chemical engineers in solving bottleneck challenges in CE.展开更多
AIM:To compare superficial and deep vascular properties of optic discs between crowded discs and controls using optical coherence tomography angiography(OCT-A).METHODS:Thirty patients with crowded discs,and 47 control...AIM:To compare superficial and deep vascular properties of optic discs between crowded discs and controls using optical coherence tomography angiography(OCT-A).METHODS:Thirty patients with crowded discs,and 47 control subjects were enrolled in the study.One eye of each individual was included and OCT-A scans of optic discs were obtained in a 4.5×4.5 mm^(2) rectangular area.Radial peripapillary capillary(RPC)density,peripapillary retinal nerve fiber layer(pRNFL)thickness,cup volume,rim area,disc area,cup-to-disc(c/d)area ratio,and vertical c/d ratio were obtained automatically using device software.Automated parapapillary choroidal microvasculature(PPCMv)density was calculated using MATLAB software.When the vertical c/d ratio of the optic disc was absent or small cup,it was considered as a crowded disc.RESULTS:The mean signal strength index of OCT-A images was similar between the crowded discs and control eyes(P=0.740).There was no difference in pRNFL between the two groups(P=0.102).There were no differences in RPC density in whole image(P=0.826)and peripapillary region(P=0.923),but inside disc RPC density was higher in crowded optic discs(P=0.003).The PPCMv density in the inner-hemisuperior region was also lower in crowded discs(P=0.026).The pRNFL thickness was positively correlated with peripapillary RPC density(r=0.498,P<0.001).The inside disc RPC density was negatively correlated with c/d area ratio(r=-0.341,P=0.002).CONCLUSION:The higher inside disc RPC density and lower inner-hemisuperior PPCMv density are found in eyes with crowded optic discs.展开更多
A catadioptric lens structure,also known as pancake lens,has been widely used in virtual reality(VR)displays to reduce the formfactor.However,the utilization of a half mirror(HM)to fold the optical path thrice leads t...A catadioptric lens structure,also known as pancake lens,has been widely used in virtual reality(VR)displays to reduce the formfactor.However,the utilization of a half mirror(HM)to fold the optical path thrice leads to a significant optical loss.The theoretical maximum optical efficiency is merely 25%.To transcend this optical efficiency constraint while retaining the foldable characteristic inherent to traditional pancake optics,in this paper,we propose a theoretically lossless folded optical system to replace the HM with a nonreciprocal polarization rotator.In our feasibility demonstration experiment,we used a commercial Faraday rotator(FR)and reflective polarizers to replace the lossy HM.The theoretically predicted 100%efficiency can be achieved approximately by using two high-extinction-ratio reflective polarizers.In addition,we evaluated the ghost images using a micro-OLED panel in our imaging system.Indeed,the ghost images can be suppressed to undetectable level if the optics are with antireflection coating.Our novel pancake optical system holds great potential for revolutionizing next-generation VR displays with lightweight,compact formfactor,and low power consumption.展开更多
We report on the performance improvement of long-wave infrared quantum cascade lasers(LWIR QCLs)by studying and optimizing the anti-reflection(AR)optical facet coating.Compared to the Al2O3 AR coat⁃ing,the Y_(2)O_(3)A...We report on the performance improvement of long-wave infrared quantum cascade lasers(LWIR QCLs)by studying and optimizing the anti-reflection(AR)optical facet coating.Compared to the Al2O3 AR coat⁃ing,the Y_(2)O_(3)AR coating exhibits higher catastrophic optical mirror damage(COMD)level,and the optical facet coatings of both material systems have no beam steering effect.A 3-mm-long,9.5-μm-wide buried-heterostruc⁃ture(BH)LWIR QCL ofλ~8.5μm with Y_(2)O_(3)metallic high-reflection(HR)and AR of~0.2%reflectivity coating demonstrates a maximum pulsed peak power of 2.19 W at 298 K,which is 149%higher than that of the uncoated device.For continuous-wave(CW)operation,by optimizing the reflectivity of the Y_(2)O_(3)AR coating,the maximum output power reaches 0.73 W,which is 91%higher than that of the uncoated device.展开更多
Recent years have witnessed significant advances in utilizing machine learning-based techniques for thermal metamaterial-based structures and devices to attain favorable thermal transport behaviors.Among the various t...Recent years have witnessed significant advances in utilizing machine learning-based techniques for thermal metamaterial-based structures and devices to attain favorable thermal transport behaviors.Among the various thermal transport behaviors,achieving thermal transparency stands out as particularly desirable and intriguing.Our earlier work demonstrated the use of a thermal metamaterial-based periodic interparticle system as the underlying structure for manipulating thermal transport behavior and achieving thermal transparency.In this paper,we introduce an approach based on graph neural network to address the complex inverse design problem of determining the design parameters for a thermal metamaterial-based periodic interparticle system with the desired thermal transport behavior.Our work demonstrates that combining graph neural network modeling and inference is an effective approach for solving inverse design problems associated with attaining desirable thermal transport behaviors using thermal metamaterials.展开更多
AIM:To assess the repeatability,interocular correlation,and agreement of quantitative swept-source optical coherence tomography angiography(OCTA)optic nerve head(ONH)parameters in healthy subjects.METHODS:Thir ty-thre...AIM:To assess the repeatability,interocular correlation,and agreement of quantitative swept-source optical coherence tomography angiography(OCTA)optic nerve head(ONH)parameters in healthy subjects.METHODS:Thir ty-three healthy subjects were enrolled.The ONH of both eyes were imaged four times by a swept-source-OCTA using a 3 mm×3 mm scanning protocol.Images of the radial peripapillary capillary were analyzed by a customized Matlab program,and the vessel density,fractal dimension,and vessel diameter index were measured.The repeatability of the four scans was determined by the intraclass correlation coefficient(ICC).The most well-centered optic disc from the four repeated scans was then selected for the interocular correlation and agreement analysis using the Pearson correlation coefficient,ICC and Bland-Altman plots.RESULTS:All swept-source-OCTA ONH parameters exhibited certain repeatability,with ICC>0.760 and coefficient of variation(CoV)≤7.301%.The obvious interocular correlation was observed for papillary vessel density(ICC=0.857),vessel diameter index(ICC=0.857)and fractal dimension(ICC=0.906),while circumpapillary vessel density exhibited moderate interocular correlation(ICC=0.687).Bland-Altman plots revealed an agreement range of-5.26%to 6.21%for circumpapillary vessel density.CONCLUSION:OCTA ONH parameters demonstrate good repeatability in healthy subjects.The interocular correlations of papillary vessel density,fractal dimension and vessel diameter index are high,but the correlation for circumpapillary vessel density is moderate.展开更多
Optical imaging and measurement are closely related and have a wide range of applications such as non-destructive testing, ultra precision manufacturing, virtual reality, and intelligent driving control, etc. Optical ...Optical imaging and measurement are closely related and have a wide range of applications such as non-destructive testing, ultra precision manufacturing, virtual reality, and intelligent driving control, etc. Optical imaging instruments are an important means for humans to observe the universe and understand nature. Optical measurement technology with advantages of non-contact, fast speed, and high precision.展开更多
In the last two decades the study of red blood cell elasticity using optical tweezers has known a rise appearing in the scientific research with regard to the various works carried out. Despite the various work done, ...In the last two decades the study of red blood cell elasticity using optical tweezers has known a rise appearing in the scientific research with regard to the various works carried out. Despite the various work done, no study has been done so far to study the influence of friction on the red blood cell indentation response using optical tweezers. In this study, we have developed a new approach to determine the coefficient of friction as well as the frictional forces of the red blood cell. This approach therefore allowed us to simultaneously carry out the indentation and traction test, which allowed us to extract the interfacial properties of the microbead red blood cell couple, among other things, the friction coefficient. This property would be extremely important to investigate the survival and mechanical features of cells, which will be of great physiological and pathological significance. But taking into account the hypothesis of friction as defined by the isotropic Coulomb law. The experiment performed for this purpose is the Brinell Hardness Test (DB).展开更多
AIM:To evaluate the predictive value of superficial retinal capillary plexus(SRCP)and radial peripapillary capillary(RPC)for visual field recovery after optic cross decompression and compare them with peripapillary ne...AIM:To evaluate the predictive value of superficial retinal capillary plexus(SRCP)and radial peripapillary capillary(RPC)for visual field recovery after optic cross decompression and compare them with peripapillary nerve fiber layer(pRNFL)and ganglion cell complex(GCC).METHODS:This prospective longitudinal observational study included patients with chiasmal compression due to sellar region mass scheduled for decompressive surgery.Generalized estimating equations were used to compare retinal vessel density and retinal layer thickness preand post-operatively and with healthy controls.Logistic regression models were used to assess the relationship between preoperative GCC,pRNFL,SRCP,and RPC parameters and visual field recovery after surgery.RESULTS:The study included 43 eyes of 24 patients and 48 eyes of 24 healthy controls.Preoperative RPC and SRCP vessel density and pRNFL and GCC thickness were lower than healthy controls and higher than postoperative values.The best predictive GCC and pRNFL models were based on the superior GCC[area under the curve(AUC)=0.866]and the tempo-inferior pRNFL(AUC=0.824),and the best predictive SRCP and RPC models were based on the nasal SRCP(AUC=0.718)and tempo-inferior RPC(AUC=0.825).There was no statistical difference in the predictive value of the superior GCC,tempo-inferior pRNFL,and tempo-inferior RPC(all P>0.05).CONCLUSION:Compression of the optic chiasm by tumors in the saddle area can reduce retinal thickness and blood perfusion.This reduction persists despite the recovery of the visual field after decompression surgery.GCC,pRNFL,and RPC can be used as sensitive predictors of visual field recovery after decompression surgery.展开更多
In this article,a series of high refractive indices(1.50-1.53)thiol phenyl polysiloxane(TPS)were synthesized via hydrolytic sol-gel reaction.The Fourier transform infrared spectra(FT-IR)and nuclear magnetic resonance ...In this article,a series of high refractive indices(1.50-1.53)thiol phenyl polysiloxane(TPS)were synthesized via hydrolytic sol-gel reaction.The Fourier transform infrared spectra(FT-IR)and nuclear magnetic resonance spectra(NMR)results showed that TPS conformed to the predicted structures.Natural terpene linalool was exploited as photocrosslinker to fabricate UV-curing linalool-polysiloxane hybrid films(LPH)with TPS via photoinitiated thiol-ene reaction.LPH rapidly cured under UV irradiation at the intensity of 80 mW/cm^(2) in 30 s,exhibiting good UV-curing properties.The optical transmittance of LPH in the wavelength of 300-800 nm was over 90%,exhibiting good optical transparency.The water contact angle and water vapor permeability results showed that the introduction of phenyl groups enhance the hydrophobicity and water vapor barrier properties of LPH.The results indicated the potential of LPHs in the applications of optical functional coatings.展开更多
The study of nonlinear optical responses in the mid-infrared(mid-IR)regime is essential for advancing ultrafast mid-IR laser applications.However,nonlinear optical effects under mid-IR excitation are rarely reported d...The study of nonlinear optical responses in the mid-infrared(mid-IR)regime is essential for advancing ultrafast mid-IR laser applications.However,nonlinear optical effects under mid-IR excitation are rarely reported due to the lack of suitable nonlinear optical materials.The natural van derWaals heterostructure franckeite,known for its narrow bandgap and stability in air,shows great potential for developing mid-IR nonlinear optical devices.We have experimentally demonstrated that layered franckeite exhibits a broadband wavelength-dependent nonlinear optical response in the mid-IR spectral region.Franckeite nanosheets were prepared using a liquid-phase exfoliation method,and their nonlinear optical response was characterized in the spectral range of 3000 nm to 5000 nm.The franckeite nanosheets exhibit broadband wavelengthdependent third-order nonlinearities,with nonlinear absorption and refraction coefficients estimated to be about 10^(-7)cm/W and 10^(-11)cm^(2)/W,respectively.Additionally,a passively Q-switched fluoride fiber laser operating around a wavelength of 2800 nm was achieved,delivering nanosecond pulses with a signal-to-noise ratio of 43.6 dB,based on the nonlinear response of franckeite.These findings indicate that layered franckeite possesses broadband nonlinear optical characteristics in the mid-IR region,potentially enabling new possibilities for mid-IR photonic devices.展开更多
基金supported by the National Natural Science Foundation of China(62375144 and 61875092)Tianjin Foundation of Natural Science(21JCYBJC00260)Beijing-Tianjin-Hebei Basic Research Cooperation Special Program(19JCZDJC65300).
文摘Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts and restore texture completely in OCT images.We proposed a deep learning-based inpainting method of saturation artifacts in this paper.The generation mechanism of saturation artifacts was analyzed,and experimental and simulated datasets were built based on the mechanism.Enhanced super-resolution generative adversarial networks were trained by the clear–saturated phantom image pairs.The perfect reconstructed results of experimental zebrafish and thyroid OCT images proved its feasibility,strong generalization,and robustness.
基金support from the National Natural Science Foundation of China (No.62005164,62222507,62175101,and 62005166)the Shanghai Natural Science Foundation (23ZR1443700)+3 种基金Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission (23SG41)the Young Elite Scientist Sponsorship Program by CAST (No.20220042)Science and Technology Commission of Shanghai Municipality (Grant No.21DZ1100500)the Shanghai Municipal Science and Technology Major Project,and the Shanghai Frontiers Science Center Program (2021-2025 No.20).
文摘Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12103059,12033007,12303077,and 12303076)the Fund from the Xi’an Science and Technology Bureau,China(Grant No.E019XK1S04)the Fund from the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.1188000XGJ).
文摘We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase locking loop in the conventional active phase control scheme,the passive phase noise cancellation is realized by feeding double-trip beat-note frequency to the driver of the acoustic optical modulator at the local site.This passive scheme exhibits fine robustness and reliability,making it suitable for long-distance and noisy fiber links.An optical regeneration station is used in the link for signal amplification and cascaded transmission.The phase noise cancellation and transfer instability of the 972-km link is investigated,and transfer instability of 1.1×10^(-19)at 10^(4)s is achieved.This work provides a promising method for realizing optical frequency distribution over thousands of kilometers by using fiber links.
基金supported by the National Natural Science Foundation of China (Grant No. 12104227)the Scientific Research Foundation of Nanjing Institute of Technology (Grant No. YKJ202021)the Guizhou Provincial Science and Technology Projects (Grant No. ZK [2022] general 035)。
文摘We show that an optical transparency can be obtained by using only one single magneto-optical ring resonator. This effect is based on the splitting of counterclockwise and clockwise modes in the ring resonator. Within a proposed resonator-waveguide configuration the superposition between the two degeneracy broken modes produces a transparency window,which can be closed, open, and modified by tuning the applied magnetic field. This phenomenon is an analogue of Autler–Townes splitting, and the magnetic field is equivalent to the strong external pump field. We provide a theoretic analysis on the induced transparency, and numerically demonstrate the effect using full-wave simulation. Feasible implication of this effect and its potential applications are also discussed.
基金Supported by the National Natural Science Foundation of China(No.82101087)Shanghai Clinical Research Key Project(No.SHDC2020CR6029).
文摘AIM:To compare the three-dimensional choroidal vascularity index(CVI)and choroidal thickness between fellow eyes of acute primary angle-closure(F-APAC)and chronic primary angle-closure glaucoma(F-CPACG)and the eyes of normal controls.METHODS:This study included 37 patients with unilateral APAC,37 with asymmetric CPACG without prior treatment,and 36 healthy participants.Using swept-source optical coherence tomography(SS-OCT),the macular and peripapillary choroidal thickness and three-dimensional CVI were measured and compared globally and sectorally.Pearson’s correlation analysis and multivariate regression models were used to evaluate choroidal thickness or CVI with related factors.RESULTS:The mean subfoveal CVIs were 0.35±0.10,0.33±0.09,and 0.29±0.04,and the mean subfoveal choroidal thickness were 315.62±52.92,306.22±59.29,and 262.69±45.55μm in the F-APAC,F-CPACG,and normal groups,respectively.All macular sectors showed significantly higher CVIs and choroidal thickness in the F-APAC and F-CPACG eyes than in the normal eyes(P<0.05),while there were no significant differences between the F-APAC and F-CPACG eyes.In the peripapillary region,the mean overall CVIs were 0.21±0.08,0.20±0.08,and 0.19±0.05,and the mean overall choroidal thickness were 180.45±54.18,174.82±50.67,and 176.18±37.94μm in the F-APAC,F-CPACG,and normal groups,respectively.There were no significant differences between any of the two groups in all peripapillary sectors.Younger age,shorter axial length,and the F-APAC or F-CPACG diagnosis were significantly associated with higher subfoveal CVI and thicker subfoveal choroidal thickness(P<0.05).CONCLUSION:The fellow eyes of unilateral APAC or asymmetric CPACG have higher macular CVI and choroidal thickness than those of the normal controls.Neither CVI nor choroidal thickness can distinguish between eyes predisposed to APAC or CPACG.A thicker choroid with a higher vascular volume may play a role in the pathogenesis of primary angle-closure glaucoma.
基金funding from the National Natural Science Foundation of China(NSFC)under grants 61627827,61705068the Natural Science Foundation of Fujian Province 2021J01813the Fujian Medical University Research Foundation of Talented Scholars XRCZX2021004.
文摘In this work,we present an intravascular dual-mode endoscopic system capable of both intravascular photoacoustic imaging(IVPAI)and intravascular optical coherence tomography(IVOCT)for recognizing spontaneous coronary artery dissection(SCAD)phantoms.IVPAI provides high-resolution and high-penetration images of intramural hematoma(IMH)at different depths,so it is especially useful for imaging deep blood clots associated with imaging phantoms.IVOCT can readily visualize the double-lumen morphology of blood vessel walls to identify intimal tears.We also demonstrate the capability of this dual-mode endoscopic system using mimicking phantoms and biological samples of blood clots in ex vivo porcine arteries.The results of the experiments indicate that the combined IVPAI and IVOCT technique has the potential to provide a more accurate SCAD assessment method for clinical applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12334020 and 11927810)the National Key Research and Development Program of China(Grant No.2022YFB3904001).
文摘We construct a power enhancement cavity to form an optical lattice in an ytterbium optical clock.It is demonstrated that the intra-cavity lattice power can be increased by about 45 times,and the trap depth can be as large as 1400Er when laser light with a power of only 0.6 W incident to the lattice cavity.Such high trap depths are the key to accurate evaluation of the lattice-induced light shift with an uncertainty down to~1×10-18.By probing the ytterbium atoms trapped in the power-enhanced optical lattice,we obtain a 4.3 Hz-linewidth Rabi spectrum,which is then used to feedback to the clock laser for the close loop operation of the optical lattice clock.We evaluate the density shift of the Yb optical lattice clock based on interleaving measurements,which is-0.46(62)mHz.This result is smaller compared to the density shift of our first Yb optical clock without lattice power enhancement cavity mainly due to a larger lattice diameter of 344μm.
基金supported by the National Natural Science Foundation of China(NSFC)(62125503,62261160388)the Natural Science Foundation of Hubei Province of China(2023AFA028)the Innovation Project of Optics Valley Laboratory(OVL2021BG004).
文摘In recent years,space-division multiplexing(SDM)technology,which involves transmitting data information on multiple parallel channels for efficient capacity scaling,has been widely used in fiber and free-space optical communication sys-tems.To enable flexible data management and cope with the mixing between different channels,the integrated reconfig-urable optical processor is used for optical switching and mitigating the channel crosstalk.However,efficient online train-ing becomes intricate and challenging,particularly when dealing with a significant number of channels.Here we use the stochastic parallel gradient descent(SPGD)algorithm to configure the integrated optical processor,which has less com-putation than the traditional gradient descent(GD)algorithm.We design and fabricate a 6×6 on-chip optical processor on silicon platform to implement optical switching and descrambling assisted by the online training with the SPDG algorithm.Moreover,we apply the on-chip processor configured by the SPGD algorithm to optical communications for optical switching and efficiently mitigating the channel crosstalk in SDM systems.In comparison with the traditional GD al-gorithm,it is found that the SPGD algorithm features better performance especially when the scale of matrix is large,which means it has the potential to optimize large-scale optical matrix computation acceleration chips.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674107,61475049,11775083,61774062,and 61771205).
文摘Two types of one-dimensional(1D)anti-PT-symmetric periodic ring optical waveguide networks,consisting of gain and loss materials,are constructed.The singular optical propagation properties of these networks are investigated.The results show that the system composed of gain materials exhibits characteristics of ultra-strong transmission and bidirectional reflection.Conversely,the system composed of loss materials demonstrates equal transmittance and reflectance at some frequencies.In both the systems,a new type of total reflection phenomenon is observed.When the imaginary part of the refractive indices of waveguide segments is smaller than 10-5,the system shows bidirectional transparency with the transmittance tending to be 1 and reflectivity to be smaller than 10-8 at some bands.When the refractive indices of the waveguide segments are real,the system will be bidirectional transparent at the full band.These findings may deepen the understanding of anti-PT-symmetric optical systems and optical waveguide networks,and possess potential applications in efficient optical energy storage,ultra-sensitive optical filters,ultra-sensitive all-optical switches,integrated optical chips,stealth physics,and so on.
文摘The issue of opacity within data-driven artificial intelligence(AI)algorithms has become an impediment to these algorithms’extensive utilization,especially within sensitive domains concerning health,safety,and high profitability,such as chemical engineering(CE).In order to promote reliable AI utilization in CE,this review discusses the concept of transparency within AI utilizations,which is defined based on both explainable AI(XAI)concepts and key features from within the CE field.This review also highlights the requirements of reliable AI from the aspects of causality(i.e.,the correlations between the predictions and inputs of an AI),explainability(i.e.,the operational rationales of the workflows),and informativeness(i.e.,the mechanistic insights of the investigating systems).Related techniques are evaluated together with state-of-the-art applications to highlight the significance of establishing reliable AI applications in CE.Furthermore,a comprehensive transparency analysis case study is provided as an example to enhance understanding.Overall,this work provides a thorough discussion of this subject matter in a way that—for the first time—is particularly geared toward chemical engineers in order to raise awareness of responsible AI utilization.With this vital missing link,AI is anticipated to serve as a novel and powerful tool that can tremendously aid chemical engineers in solving bottleneck challenges in CE.
文摘AIM:To compare superficial and deep vascular properties of optic discs between crowded discs and controls using optical coherence tomography angiography(OCT-A).METHODS:Thirty patients with crowded discs,and 47 control subjects were enrolled in the study.One eye of each individual was included and OCT-A scans of optic discs were obtained in a 4.5×4.5 mm^(2) rectangular area.Radial peripapillary capillary(RPC)density,peripapillary retinal nerve fiber layer(pRNFL)thickness,cup volume,rim area,disc area,cup-to-disc(c/d)area ratio,and vertical c/d ratio were obtained automatically using device software.Automated parapapillary choroidal microvasculature(PPCMv)density was calculated using MATLAB software.When the vertical c/d ratio of the optic disc was absent or small cup,it was considered as a crowded disc.RESULTS:The mean signal strength index of OCT-A images was similar between the crowded discs and control eyes(P=0.740).There was no difference in pRNFL between the two groups(P=0.102).There were no differences in RPC density in whole image(P=0.826)and peripapillary region(P=0.923),but inside disc RPC density was higher in crowded optic discs(P=0.003).The PPCMv density in the inner-hemisuperior region was also lower in crowded discs(P=0.026).The pRNFL thickness was positively correlated with peripapillary RPC density(r=0.498,P<0.001).The inside disc RPC density was negatively correlated with c/d area ratio(r=-0.341,P=0.002).CONCLUSION:The higher inside disc RPC density and lower inner-hemisuperior PPCMv density are found in eyes with crowded optic discs.
文摘A catadioptric lens structure,also known as pancake lens,has been widely used in virtual reality(VR)displays to reduce the formfactor.However,the utilization of a half mirror(HM)to fold the optical path thrice leads to a significant optical loss.The theoretical maximum optical efficiency is merely 25%.To transcend this optical efficiency constraint while retaining the foldable characteristic inherent to traditional pancake optics,in this paper,we propose a theoretically lossless folded optical system to replace the HM with a nonreciprocal polarization rotator.In our feasibility demonstration experiment,we used a commercial Faraday rotator(FR)and reflective polarizers to replace the lossy HM.The theoretically predicted 100%efficiency can be achieved approximately by using two high-extinction-ratio reflective polarizers.In addition,we evaluated the ghost images using a micro-OLED panel in our imaging system.Indeed,the ghost images can be suppressed to undetectable level if the optics are with antireflection coating.Our novel pancake optical system holds great potential for revolutionizing next-generation VR displays with lightweight,compact formfactor,and low power consumption.
基金Supported by the National Natural Science Foundation of China(12393830)。
文摘We report on the performance improvement of long-wave infrared quantum cascade lasers(LWIR QCLs)by studying and optimizing the anti-reflection(AR)optical facet coating.Compared to the Al2O3 AR coat⁃ing,the Y_(2)O_(3)AR coating exhibits higher catastrophic optical mirror damage(COMD)level,and the optical facet coatings of both material systems have no beam steering effect.A 3-mm-long,9.5-μm-wide buried-heterostruc⁃ture(BH)LWIR QCL ofλ~8.5μm with Y_(2)O_(3)metallic high-reflection(HR)and AR of~0.2%reflectivity coating demonstrates a maximum pulsed peak power of 2.19 W at 298 K,which is 149%higher than that of the uncoated device.For continuous-wave(CW)operation,by optimizing the reflectivity of the Y_(2)O_(3)AR coating,the maximum output power reaches 0.73 W,which is 91%higher than that of the uncoated device.
基金funding from the National Natural Science Foundation of China (Grant Nos.12035004 and 12320101004)the Innovation Program of Shanghai Municipal Education Commission (Grant No.2023ZKZD06).
文摘Recent years have witnessed significant advances in utilizing machine learning-based techniques for thermal metamaterial-based structures and devices to attain favorable thermal transport behaviors.Among the various thermal transport behaviors,achieving thermal transparency stands out as particularly desirable and intriguing.Our earlier work demonstrated the use of a thermal metamaterial-based periodic interparticle system as the underlying structure for manipulating thermal transport behavior and achieving thermal transparency.In this paper,we introduce an approach based on graph neural network to address the complex inverse design problem of determining the design parameters for a thermal metamaterial-based periodic interparticle system with the desired thermal transport behavior.Our work demonstrates that combining graph neural network modeling and inference is an effective approach for solving inverse design problems associated with attaining desirable thermal transport behaviors using thermal metamaterials.
基金Natural Science Foundation of Guangdong Province(No.2018A0303130306)Shantou Science and Technology Program(No.190917085269835,No.200629165261641).
文摘AIM:To assess the repeatability,interocular correlation,and agreement of quantitative swept-source optical coherence tomography angiography(OCTA)optic nerve head(ONH)parameters in healthy subjects.METHODS:Thir ty-three healthy subjects were enrolled.The ONH of both eyes were imaged four times by a swept-source-OCTA using a 3 mm×3 mm scanning protocol.Images of the radial peripapillary capillary were analyzed by a customized Matlab program,and the vessel density,fractal dimension,and vessel diameter index were measured.The repeatability of the four scans was determined by the intraclass correlation coefficient(ICC).The most well-centered optic disc from the four repeated scans was then selected for the interocular correlation and agreement analysis using the Pearson correlation coefficient,ICC and Bland-Altman plots.RESULTS:All swept-source-OCTA ONH parameters exhibited certain repeatability,with ICC>0.760 and coefficient of variation(CoV)≤7.301%.The obvious interocular correlation was observed for papillary vessel density(ICC=0.857),vessel diameter index(ICC=0.857)and fractal dimension(ICC=0.906),while circumpapillary vessel density exhibited moderate interocular correlation(ICC=0.687).Bland-Altman plots revealed an agreement range of-5.26%to 6.21%for circumpapillary vessel density.CONCLUSION:OCTA ONH parameters demonstrate good repeatability in healthy subjects.The interocular correlations of papillary vessel density,fractal dimension and vessel diameter index are high,but the correlation for circumpapillary vessel density is moderate.
文摘Optical imaging and measurement are closely related and have a wide range of applications such as non-destructive testing, ultra precision manufacturing, virtual reality, and intelligent driving control, etc. Optical imaging instruments are an important means for humans to observe the universe and understand nature. Optical measurement technology with advantages of non-contact, fast speed, and high precision.
文摘In the last two decades the study of red blood cell elasticity using optical tweezers has known a rise appearing in the scientific research with regard to the various works carried out. Despite the various work done, no study has been done so far to study the influence of friction on the red blood cell indentation response using optical tweezers. In this study, we have developed a new approach to determine the coefficient of friction as well as the frictional forces of the red blood cell. This approach therefore allowed us to simultaneously carry out the indentation and traction test, which allowed us to extract the interfacial properties of the microbead red blood cell couple, among other things, the friction coefficient. This property would be extremely important to investigate the survival and mechanical features of cells, which will be of great physiological and pathological significance. But taking into account the hypothesis of friction as defined by the isotropic Coulomb law. The experiment performed for this purpose is the Brinell Hardness Test (DB).
文摘AIM:To evaluate the predictive value of superficial retinal capillary plexus(SRCP)and radial peripapillary capillary(RPC)for visual field recovery after optic cross decompression and compare them with peripapillary nerve fiber layer(pRNFL)and ganglion cell complex(GCC).METHODS:This prospective longitudinal observational study included patients with chiasmal compression due to sellar region mass scheduled for decompressive surgery.Generalized estimating equations were used to compare retinal vessel density and retinal layer thickness preand post-operatively and with healthy controls.Logistic regression models were used to assess the relationship between preoperative GCC,pRNFL,SRCP,and RPC parameters and visual field recovery after surgery.RESULTS:The study included 43 eyes of 24 patients and 48 eyes of 24 healthy controls.Preoperative RPC and SRCP vessel density and pRNFL and GCC thickness were lower than healthy controls and higher than postoperative values.The best predictive GCC and pRNFL models were based on the superior GCC[area under the curve(AUC)=0.866]and the tempo-inferior pRNFL(AUC=0.824),and the best predictive SRCP and RPC models were based on the nasal SRCP(AUC=0.718)and tempo-inferior RPC(AUC=0.825).There was no statistical difference in the predictive value of the superior GCC,tempo-inferior pRNFL,and tempo-inferior RPC(all P>0.05).CONCLUSION:Compression of the optic chiasm by tumors in the saddle area can reduce retinal thickness and blood perfusion.This reduction persists despite the recovery of the visual field after decompression surgery.GCC,pRNFL,and RPC can be used as sensitive predictors of visual field recovery after decompression surgery.
基金the financial funding of the Guangdong Province Applied Science and Technology R&D Special Fund Project:Key Technologies for Industrialization of Sulfur-Resistant and High Refractive-Index LED Packaging Silicone Materials(2016B090930010).
文摘In this article,a series of high refractive indices(1.50-1.53)thiol phenyl polysiloxane(TPS)were synthesized via hydrolytic sol-gel reaction.The Fourier transform infrared spectra(FT-IR)and nuclear magnetic resonance spectra(NMR)results showed that TPS conformed to the predicted structures.Natural terpene linalool was exploited as photocrosslinker to fabricate UV-curing linalool-polysiloxane hybrid films(LPH)with TPS via photoinitiated thiol-ene reaction.LPH rapidly cured under UV irradiation at the intensity of 80 mW/cm^(2) in 30 s,exhibiting good UV-curing properties.The optical transmittance of LPH in the wavelength of 300-800 nm was over 90%,exhibiting good optical transparency.The water contact angle and water vapor permeability results showed that the introduction of phenyl groups enhance the hydrophobicity and water vapor barrier properties of LPH.The results indicated the potential of LPHs in the applications of optical functional coatings.
基金supported by the National Natural Science Foundation of China(Grant No.61975055)the Natural Science Foundation of Hunan Province,China(Grant No.2023JJ30165)+1 种基金the Natural Science Foundation of Shandong Province,China(Grant No.ZR2022QF005)the Doctoral Fund of University of Heze(Grant No.XY22BS14).
文摘The study of nonlinear optical responses in the mid-infrared(mid-IR)regime is essential for advancing ultrafast mid-IR laser applications.However,nonlinear optical effects under mid-IR excitation are rarely reported due to the lack of suitable nonlinear optical materials.The natural van derWaals heterostructure franckeite,known for its narrow bandgap and stability in air,shows great potential for developing mid-IR nonlinear optical devices.We have experimentally demonstrated that layered franckeite exhibits a broadband wavelength-dependent nonlinear optical response in the mid-IR spectral region.Franckeite nanosheets were prepared using a liquid-phase exfoliation method,and their nonlinear optical response was characterized in the spectral range of 3000 nm to 5000 nm.The franckeite nanosheets exhibit broadband wavelengthdependent third-order nonlinearities,with nonlinear absorption and refraction coefficients estimated to be about 10^(-7)cm/W and 10^(-11)cm^(2)/W,respectively.Additionally,a passively Q-switched fluoride fiber laser operating around a wavelength of 2800 nm was achieved,delivering nanosecond pulses with a signal-to-noise ratio of 43.6 dB,based on the nonlinear response of franckeite.These findings indicate that layered franckeite possesses broadband nonlinear optical characteristics in the mid-IR region,potentially enabling new possibilities for mid-IR photonic devices.