This paper analyzes the characteristic of matching efficiency between the fundamental mode of two kinds of optical waveguides and its Gaussian approximate field.Then, it presents a new method where the mode-field half...This paper analyzes the characteristic of matching efficiency between the fundamental mode of two kinds of optical waveguides and its Gaussian approximate field.Then, it presents a new method where the mode-field half-width of Caussian approximation for the fundamental mode should be defined according to the maximal matching efficiency method. The relationship between the mode-field half-width of the Gaussian approximate field obtained from the maximal matching efficiency and normalized frequency is studied; furthermore, two formulas of mode-field half-widths as a function of normalized frequency are proposed.展开更多
Optical wave-guiding structures that are non-uniform in the propagation direction are fundamental building blocks of integrated optical circuits.Numerical simulation of lightwaves propagating in these structures is an...Optical wave-guiding structures that are non-uniform in the propagation direction are fundamental building blocks of integrated optical circuits.Numerical simulation of lightwaves propagating in these structures is an essential tool to engineers designing photonic components.In this paper,we review recent developments in the most widely used simulation methods for frequency domain propagation problems.展开更多
We introduce a mathematical model based on a concept of intrinsic mode in order to analyse and synthesise optical wave propagation and radiation occurring in a non-uniform optical waveguide used in integrated optics a...We introduce a mathematical model based on a concept of intrinsic mode in order to analyse and synthesise optical wave propagation and radiation occurring in a non-uniform optical waveguide used in integrated optics as optical coupler. The model is based on numerical evaluation of electromagnetic wave by applying an intrinsic field integral to evaluate the field behaviour inside the optical waveguide. To analyse the field distribution inside the non-uniform waveguide and predict the beam propagation of optical energy involved in the propagation process, it is necessary to track the motion of any observation point along the tapered waveguide itself. Physically, the rays of the spectrum undergo reflections on the waveguide boundaries until the cut-off occurs and the phenomena of radiation begin. The numerical results show good agreement with those obtained by classical methods of evaluation used bv other works.展开更多
受激布里渊散射效应具有光谱线宽窄、频率稳定和增益方向敏感等优点,常用于激光器,慢光产生和微波光子滤波器等.本文基于As_(2)S_(3)硫系玻璃、以SiO_(2)为衬底设计了一种亚微米尺寸的带空气狭缝倒置结构脊型波导结构,具有高达8.22×...受激布里渊散射效应具有光谱线宽窄、频率稳定和增益方向敏感等优点,常用于激光器,慢光产生和微波光子滤波器等.本文基于As_(2)S_(3)硫系玻璃、以SiO_(2)为衬底设计了一种亚微米尺寸的带空气狭缝倒置结构脊型波导结构,具有高达8.22×10^(4)W^(–1)·m^(–1)的后向受激布里渊散射增益系数.研究显示在该结构的同种光学和声学模式下,更小的声光场有效模场面积具有更高的后向受激布里渊散射增益系数.还分析了硫系玻璃的光学损耗对后向受激布里渊散射的影响,发现当波导长度超过最优值后,斯托克斯光波功率开始下降,而增大泵浦光功率不仅可以提高斯托克斯光波功率的极大值,同时还会增大波导长度的最优值.当所输入的泵浦光功率为20 mW时,受激布里渊散射增益达到100 d B波导长度仅需要2 cm,这非常有利于光子器件的片上集成.展开更多
Using the method of separation of variables in the elliptical coordinate system, a recursive formula for the electromagnetic fields in a confocal elliptical waveguide filled with multi-layered homogeneous isotropic me...Using the method of separation of variables in the elliptical coordinate system, a recursive formula for the electromagnetic fields in a confocal elliptical waveguide filled with multi-layered homogeneous isotropic media is derived; then the eigenequation for it is given. When an elliptical waveguide becomes a circular waveguide, the electromagnetic fields and the eigenequation of the circular waveguide can be obtained from the eigenequation of the elliptical waveguide using the asymptotic formulae of Mathieu and modified Mathieu functions for a large radial coordinate in the elliptical coordinate system, and the eigenequation of a circular waveguide filled with multilayered dielectrics can be treated as a special case of an elliptical waveguide. In addition, some numerical examples are presented to analyze the propagating characteristics influenced by the permittivity, permeability of dielectrics filled in the elliptical waveguide, etc. The results show that changing the permittivity or permeability of the dielectrics filled in the waveguide and the major semiaxis value of the i-th layer can change the propagating characteristics of an elliptical waveguide.展开更多
Composite thin films of PbTiO3 nano-crystals and high transparency polymer polyetherketone (PEK-c) for application of non-linear optical devices were prepared by spin coating. The size of PbTiO3 nano-crystals was es...Composite thin films of PbTiO3 nano-crystals and high transparency polymer polyetherketone (PEK-c) for application of non-linear optical devices were prepared by spin coating. The size of PbTiO3 nano-crystals was estimated to be 30-40 nm using a transmission electron microscope. The refractive index and the mode propagation losses at 633 nm were measured using the prism coupling technique and improved photographic technique respectively. They were found to be 1.6545 and 2.00 dB cm^-1 (fundamental mode),respectively. Moreover, it is observed that this loss is increased at higher mode indices.展开更多
We propose to generate a sub-nanometer-confined optical field in a nanoslit waveguiding mode in a coupled nanowire pair(CNP).We show that,when a conventional waveguide mode with a proper polarization is evanescently c...We propose to generate a sub-nanometer-confined optical field in a nanoslit waveguiding mode in a coupled nanowire pair(CNP).We show that,when a conventional waveguide mode with a proper polarization is evanescently coupled into a properly designed CNP with a central nanoslit,it can be efficiently channeled into a high-purity nanoslit mode within a waveguiding length<10μm.The CNP can be either freestanding or on-chip by using a tapered fiber or planar waveguide for input-coupling,with a coupling efficiency up to 95%.Within the slit region,the output diffraction-limited nanoslit mode offers an extremely confined optical field(∼0.3 nm×3.3 nm)with a peak-to-background ratio higher than 25 dB and can be operated within a 200-nm bandwidth.The group velocity dispersion of the nanoslit mode for ultrafast pulsed operation is also briefly investigated.Compared with the previous lasing configuration,the waveguiding scheme demonstrated here is not only simple and straightforward in structural design but is also much flexible and versatile in operation.Therefore,the waveguiding scheme we show here may offer an efficient and flexible platform for exploring light–matter interactions beyond the nanometer scale,and developing optical technologies ranging from superresolution nanoscopy and atom/molecule manipulation to ultra-sensitivity detection.展开更多
基金Project supported by Natural Science Foundation of the Department of Science & Technology of Fujian Province of China (GrantNo 2007F5040)
文摘This paper analyzes the characteristic of matching efficiency between the fundamental mode of two kinds of optical waveguides and its Gaussian approximate field.Then, it presents a new method where the mode-field half-width of Caussian approximation for the fundamental mode should be defined according to the maximal matching efficiency method. The relationship between the mode-field half-width of the Gaussian approximate field obtained from the maximal matching efficiency and normalized frequency is studied; furthermore, two formulas of mode-field half-widths as a function of normalized frequency are proposed.
基金the Research Grants Council of Hong Kong Special Administrative Region,China(Project No.CityU 101804).
文摘Optical wave-guiding structures that are non-uniform in the propagation direction are fundamental building blocks of integrated optical circuits.Numerical simulation of lightwaves propagating in these structures is an essential tool to engineers designing photonic components.In this paper,we review recent developments in the most widely used simulation methods for frequency domain propagation problems.
基金co-supported by the University of Sciences and Technology of Oran Mohamed Boudiaf(USTOMB)the Centre of Satellites Development(CDS),Oran,Algeria
文摘We introduce a mathematical model based on a concept of intrinsic mode in order to analyse and synthesise optical wave propagation and radiation occurring in a non-uniform optical waveguide used in integrated optics as optical coupler. The model is based on numerical evaluation of electromagnetic wave by applying an intrinsic field integral to evaluate the field behaviour inside the optical waveguide. To analyse the field distribution inside the non-uniform waveguide and predict the beam propagation of optical energy involved in the propagation process, it is necessary to track the motion of any observation point along the tapered waveguide itself. Physically, the rays of the spectrum undergo reflections on the waveguide boundaries until the cut-off occurs and the phenomena of radiation begin. The numerical results show good agreement with those obtained by classical methods of evaluation used bv other works.
文摘受激布里渊散射效应具有光谱线宽窄、频率稳定和增益方向敏感等优点,常用于激光器,慢光产生和微波光子滤波器等.本文基于As_(2)S_(3)硫系玻璃、以SiO_(2)为衬底设计了一种亚微米尺寸的带空气狭缝倒置结构脊型波导结构,具有高达8.22×10^(4)W^(–1)·m^(–1)的后向受激布里渊散射增益系数.研究显示在该结构的同种光学和声学模式下,更小的声光场有效模场面积具有更高的后向受激布里渊散射增益系数.还分析了硫系玻璃的光学损耗对后向受激布里渊散射的影响,发现当波导长度超过最优值后,斯托克斯光波功率开始下降,而增大泵浦光功率不仅可以提高斯托克斯光波功率的极大值,同时还会增大波导长度的最优值.当所输入的泵浦光功率为20 mW时,受激布里渊散射增益达到100 d B波导长度仅需要2 cm,这非常有利于光子器件的片上集成.
文摘Using the method of separation of variables in the elliptical coordinate system, a recursive formula for the electromagnetic fields in a confocal elliptical waveguide filled with multi-layered homogeneous isotropic media is derived; then the eigenequation for it is given. When an elliptical waveguide becomes a circular waveguide, the electromagnetic fields and the eigenequation of the circular waveguide can be obtained from the eigenequation of the elliptical waveguide using the asymptotic formulae of Mathieu and modified Mathieu functions for a large radial coordinate in the elliptical coordinate system, and the eigenequation of a circular waveguide filled with multilayered dielectrics can be treated as a special case of an elliptical waveguide. In addition, some numerical examples are presented to analyze the propagating characteristics influenced by the permittivity, permeability of dielectrics filled in the elliptical waveguide, etc. The results show that changing the permittivity or permeability of the dielectrics filled in the waveguide and the major semiaxis value of the i-th layer can change the propagating characteristics of an elliptical waveguide.
基金Founded by the National Natural Science Foundation (Nos. 60377016 and 60476020) the "863" National Plan (No. 2002AA313070) of China.
文摘Composite thin films of PbTiO3 nano-crystals and high transparency polymer polyetherketone (PEK-c) for application of non-linear optical devices were prepared by spin coating. The size of PbTiO3 nano-crystals was estimated to be 30-40 nm using a transmission electron microscope. The refractive index and the mode propagation losses at 633 nm were measured using the prism coupling technique and improved photographic technique respectively. They were found to be 1.6545 and 2.00 dB cm^-1 (fundamental mode),respectively. Moreover, it is observed that this loss is increased at higher mode indices.
基金This work was sup-ported by the National Key Research and Development Program of China(2018YFB2200404)the New Cornerstone Science Foundation,the National Natural Science Foundation of China(92150302 and 62175213)+1 种基金the Natural Science Foundation of Zhejiang Province(LR21F050002)the Fundamental Research Funds for the Central Universities.
文摘We propose to generate a sub-nanometer-confined optical field in a nanoslit waveguiding mode in a coupled nanowire pair(CNP).We show that,when a conventional waveguide mode with a proper polarization is evanescently coupled into a properly designed CNP with a central nanoslit,it can be efficiently channeled into a high-purity nanoslit mode within a waveguiding length<10μm.The CNP can be either freestanding or on-chip by using a tapered fiber or planar waveguide for input-coupling,with a coupling efficiency up to 95%.Within the slit region,the output diffraction-limited nanoslit mode offers an extremely confined optical field(∼0.3 nm×3.3 nm)with a peak-to-background ratio higher than 25 dB and can be operated within a 200-nm bandwidth.The group velocity dispersion of the nanoslit mode for ultrafast pulsed operation is also briefly investigated.Compared with the previous lasing configuration,the waveguiding scheme demonstrated here is not only simple and straightforward in structural design but is also much flexible and versatile in operation.Therefore,the waveguiding scheme we show here may offer an efficient and flexible platform for exploring light–matter interactions beyond the nanometer scale,and developing optical technologies ranging from superresolution nanoscopy and atom/molecule manipulation to ultra-sensitivity detection.