Adaptive optics(AO)is essential for high-quality ground-based observations with large telescopes because it counters the impact of wavefront aberrations caused by atmospheric turbulence.The new vacuum solar telescope(...Adaptive optics(AO)is essential for high-quality ground-based observations with large telescopes because it counters the impact of wavefront aberrations caused by atmospheric turbulence.The new vacuum solar telescope(NVST)is one of the most important high-resolution solar observation instruments in the world.Three sets of solar adaptive optics systems have been developed and installed on this telescope:conventional adaptive optics,ground layer adaptive optics,and multi-conjugate adaptive optics.These have been in operation from 2018 to 2023.This paper details the development and application of solar adaptive optics on the NVST and discusses the newest instrumentation.展开更多
The perturbed Riemann problem for a hyperbolic system of conservation laws arising in geometrical optics with three constant initial states is solved.By studying the interactions among of the delta-shock,vacuum,and co...The perturbed Riemann problem for a hyperbolic system of conservation laws arising in geometrical optics with three constant initial states is solved.By studying the interactions among of the delta-shock,vacuum,and contact discontinuity,fourteen kinds of structures of Riemann solutions are obtained.The compound wave solutions consisting of delta-shocks,vacuums,and contact discontinuities are found.The single and double closed vacuum cavitations develop in solutions.Furthermore,it is shown that the solutions of the Riemann problem for the geometrical optics system are stable under certain perturbation of the initial data.Finally,the numerical results completely coinciding with theoretical analysis are presented.展开更多
A 61 element adaptive optical system has been preliminary tested in the Coudé path of the 1 2m telescope at the Yunnan observatory this year. The whole system will be fully operated next year. This paper describe...A 61 element adaptive optical system has been preliminary tested in the Coudé path of the 1 2m telescope at the Yunnan observatory this year. The whole system will be fully operated next year. This paper describes the AO system performances and its first experiment results, and the possible astronomical research topics.展开更多
We propose a slope-based decoupling algorithm to simultaneously control the dual deformable mirrors (DMs) in a woofer-tweeter adaptive optics system. This algorithm can directly use the woofer's response matrix mea...We propose a slope-based decoupling algorithm to simultaneously control the dual deformable mirrors (DMs) in a woofer-tweeter adaptive optics system. This algorithm can directly use the woofer's response matrix measured from a Shack-Hartmann wave-front sensor to construct a slope-based orthogonal basis, and then selectively distribute the large- amplitude low-order aberration to woofer DM and the remaining aberration to tweeter DM through the slope-based orthogonal basis. At the same moment, in order to avoid the two DMs generating opposite compensation, a constraint matrix used to reset tweeter control vector is convenient to be calculated with the slope-based orthogonal basis. Numeral simulation demonstrates that this algorithm has a good performance to control the adaptive optics system with dual DMs simultaneously. Compared with the typical decoupling algorithm, this algorithm can take full use of the compensation ability of woofer DM and release the stroke of tweeter DM to compensate high-order aberration. More importantly, it does not need to measure the accurate shape of tweeter's influence function and keeps better performance of restraining the coupling error with the continuous-dynamic aberration.展开更多
A first generation sodium Laser Guide Star Adaptive Optics System (LGS-AOS) was developed and integrated into the Lijiang 1.8 m telescope in 2013. The LGS-AOS has three sub-systems: (1) a 20W long pulsed sodium l...A first generation sodium Laser Guide Star Adaptive Optics System (LGS-AOS) was developed and integrated into the Lijiang 1.8 m telescope in 2013. The LGS-AOS has three sub-systems: (1) a 20W long pulsed sodium laser, (2) a 300-millimeter-diameter laser launch telescope, and (3) a 37-element com- pact adaptive optics system. On 2014 January 25, we obtained high resolution images of an my 8.18 star, HIP 43963, during the first light of the LGS-AOS. In this paper, the sodium laser, the laser launch telescope, the compact adaptive optics system and the first light results will be presented.展开更多
Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltage...Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n2) ~ O(n3) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ~(O(n)3/2), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits.展开更多
The first generation solar adaptive optics (AO) system, which consists of a fine tracking loop with a tip-tilt mirror (TTM) and a correlation tracker, and a high-order correction loop with a 37-element deformable ...The first generation solar adaptive optics (AO) system, which consists of a fine tracking loop with a tip-tilt mirror (TTM) and a correlation tracker, and a high-order correction loop with a 37-element deformable mirror (DM), a correlating Shack-Hartmann (SH) wavefront sensor (WFS) based on the ab- solute difference algorithm and a real time controller (RTC), has been developed and installed at the 1-m New Vacuum Solar Telescope (NVST) that is part of Fuxian Solar Observatory (FSO). Compared with the 37-element solar AO system developed for the 26-cm Solar Fine Structure Telescope, administered by Yunnan Astronomical Observatories, this AO system has two updates: one is the subaperture arrangement of the WFS changed from square to hexagon; the other is the high speed camera of the WFS and the corre- sponding real time controller. The WFS can be operated at a frame rate of 2100 Hz and the error correction bandwidth can exceed 100 Hz. After AO correction, the averaged residual image motion and the averaged RMS wavefront error are reduced to 0.06" and 45 nm, respectively. The results of on-sky testing obser- vations demonstrate better contrast and finer structures of the images taken with AO than those without AO.展开更多
A front-end optics system has been developed for the EAST microwave imaging reflectometry for 2D density fluctuation measurement.Via the transmitter optics system,a combination of eight transmitter beams with independ...A front-end optics system has been developed for the EAST microwave imaging reflectometry for 2D density fluctuation measurement.Via the transmitter optics system,a combination of eight transmitter beams with independent frequencies is employed to illuminate wide poloidal regions on eight distinct cutoff layers.The receiver optics collect the reflected wavefront and project them onto the vertical detector array with 12 antennas.Utilizing optimized Field Curvature adjustment lenses in the receiver optics,the front-end optics system provides a flexible and perfect matching between the image plane and a specified cutoff layer in the plasma,which ensures the correct data interpretation of density fluctuation measurement.展开更多
Ground Layer Adaptive Optics (GLAO) is a recently developed technique extensively applied to ground-based telescopes, which mainly compensates for the wavefront errors induced by ground-layer turbulence to get an ap...Ground Layer Adaptive Optics (GLAO) is a recently developed technique extensively applied to ground-based telescopes, which mainly compensates for the wavefront errors induced by ground-layer turbulence to get an appropriate point spread function in a wide field of view. The compensation results mainly depend on the turbu-lence distribution. The atmospheric turbulence at Dome A in the Antarctic is mainly distributed below 15 meters, which is an ideal site for applications of GLAO. The GLAO system has been simulated for the Kunlun Dark Universe Survey Telescope, which will be set up at Dome A, and uses a rotating mirror to generate several laser guide stars and a wavefront sensor with a wide field of view to sequentially measure the wavefronts from different laser guide stars. The system is simulated on a computer and parameters of the system are given, which provide detailed information about the design of a practical GLAO system.展开更多
Catenary optics enables metasurfaces with higher efficiency and wider bandwidth,and is highly anticipated in the imaging system,super-resolution lithography,and broadband absorbers.However,the periodic boundary approx...Catenary optics enables metasurfaces with higher efficiency and wider bandwidth,and is highly anticipated in the imaging system,super-resolution lithography,and broadband absorbers.However,the periodic boundary approximation without considering aperiodic electromagnetic crosstalk poses challenges for catenary optical devices to reach their performance limits.Here,perfect control of both local geometric and propagation phases is realized through field-driven optimization,in which the field distribution is calculated under real boundary conditions.Different from other optimization methods requiring a mass of iterations,the proposed design method requires less than ten iterations to get the efficiency close to the optimal value.Based on the library of shape-optimized catenary structures,centimeter-scale devices can be designed in ten seconds,with the performance improved by ~15%.Furthermore,this method has the ability to extend catenary-like continuous structures to arbitrary polarization,including both linear and elliptical polarizations,which is difficult to achieve with traditional design methods.It provides a way for the development of catenary optics and serves as a potent tool for constructing high-performance optical devices.展开更多
In this work,we present an intravascular dual-mode endoscopic system capable of both intravascular photoacoustic imaging(IVPAI)and intravascular optical coherence tomography(IVOCT)for recognizing spontaneous coronary ...In this work,we present an intravascular dual-mode endoscopic system capable of both intravascular photoacoustic imaging(IVPAI)and intravascular optical coherence tomography(IVOCT)for recognizing spontaneous coronary artery dissection(SCAD)phantoms.IVPAI provides high-resolution and high-penetration images of intramural hematoma(IMH)at different depths,so it is especially useful for imaging deep blood clots associated with imaging phantoms.IVOCT can readily visualize the double-lumen morphology of blood vessel walls to identify intimal tears.We also demonstrate the capability of this dual-mode endoscopic system using mimicking phantoms and biological samples of blood clots in ex vivo porcine arteries.The results of the experiments indicate that the combined IVPAI and IVOCT technique has the potential to provide a more accurate SCAD assessment method for clinical applications.展开更多
The infrared conformal window is one of the most critical components in aircraft.Conformal windows with high performance bring low aberrations,high aerodynamic performance,reliability in extreme working environments,a...The infrared conformal window is one of the most critical components in aircraft.Conformal windows with high performance bring low aberrations,high aerodynamic performance,reliability in extreme working environments,and added value for aircraft.Through the past decades,remarkable advances have been achieved in manufacturing technologies for conformal windows,where the machining accuracy approaches the nanometer level,and the surface form becomes more complex.These advances are critical to aircraft development,and these manufacturing technologies also have significant reference values for other directions of the ultra-precision machining field.In this review,the infrared materials suitable for manufacturing conformal windows are introduced and compared with insights into their performances.The remarkable advances and concrete work accomplished by researchers are reviewed.The challenges in manufacturing conformal windows that should be faced in the future are discussed.展开更多
Nano-optics is an emergent research field in physics that appeared in the 1980s,which deals with light–matter optical interactions at the nanometer scale.In early studies of nano-optics,the main concern focus is to o...Nano-optics is an emergent research field in physics that appeared in the 1980s,which deals with light–matter optical interactions at the nanometer scale.In early studies of nano-optics,the main concern focus is to obtain higher optical resolution over the diffraction limit.The researches of near-field imaging and spectroscopy based on scanning near-field optical microscopy(SNOM)are developed.The exploration of improving SNOM probe for near-field detection leads to the emergence of surface plasmons.In the sense of resolution and wider application,there has been a significant transition from seeking higher resolution microscopy to plasmonic near-field modulations in the nano-optics community during the nano-optic development.Nowadays,studies of nano-optics prefer the investigation of plasmonics in different material systems.In this article,the history of the development of near-field optics is briefly reviewed.The difficulties of conventional SNOM to achieve higher resolution are discussed.As an alternative solution,surface plasmons have shown the advantages of higher resolution,wider application,and flexible nano-optical modulation for new devices.The typical studies in different periods are introduced and characteristics of nano-optics in each stage are analyzed.In this way,the evolution progress from near-field optics to plasmonics of nano-optics research is presented.The future development of nano-optics is discussed then.展开更多
Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio fre...Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio frequencies and impact research activities and our daily lives.Traditional glass lenses are fabricated through a series of complex processes,while polymers offer versatility and ease of production.However,modern applications often require complex lens assemblies,driving the need for miniaturization and advanced designs with micro-and nanoscale features to surpass the capabilities of traditional fabrication methods.Three-dimensional(3D)printing,or additive manufacturing,presents a solution to these challenges with benefits of rapid prototyping,customized geometries,and efficient production,particularly suited for miniaturized optical imaging devices.Various 3D printing methods have demonstrated advantages over traditional counterparts,yet challenges remain in achieving nanoscale resolutions.Two-photon polymerization lithography(TPL),a nanoscale 3D printing technique,enables the fabrication of intricate structures beyond the optical diffraction limit via the nonlinear process of two-photon absorption within liquid resin.It offers unprecedented abilities,e.g.alignment-free fabrication,micro-and nanoscale capabilities,and rapid prototyping of almost arbitrary complex 3D nanostructures.In this review,we emphasize the importance of the criteria for optical performance evaluation of imaging devices,discuss material properties relevant to TPL,fabrication techniques,and highlight the application of TPL in optical imaging.As the first panoramic review on this topic,it will equip researchers with foundational knowledge and recent advancements of TPL for imaging optics,promoting a deeper understanding of the field.By leveraging on its high-resolution capability,extensive material range,and true 3D processing,alongside advances in materials,fabrication,and design,we envisage disruptive solutions to current challenges and a promising incorporation of TPL in future optical imaging applications.展开更多
As a natural mathematical form,a catenary is the curve that a hanging chain or cable adopts under its own weight when supported at its ends in a homogeneous gravitational field.This unique shape arises from the balanc...As a natural mathematical form,a catenary is the curve that a hanging chain or cable adopts under its own weight when supported at its ends in a homogeneous gravitational field.This unique shape arises from the balance of forces acting on each segment of the chain,resulting in a curve described by hyperbolic cosine functions.Catenary functions play pivotal roles in describing the electromagnetic field,intensity distribution,and dispersion of structured light on the sub-wavelength scale^(1).展开更多
We theoretically investigate coherent scattering of single photons and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system.Using the real-space Hamiltonian,analytical express...We theoretically investigate coherent scattering of single photons and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system.Using the real-space Hamiltonian,analytical expressions are derived for the transport spectra scattered by these two giant atoms with four azimuthal angles.Fano-like resonance can be exhibited in the scattering spectra by adjusting the azimuthal angle difference.High concurrence of the entangled state for two atoms can be implemented in a wide angle-difference range,and the entanglement of the atomic states can be switched on/off by modulating the additional azimuthal angle differences from the giant atoms.This suggests a novel handle to effectively control the single-photon scattering and quantum entanglement.展开更多
This paper builds a binary tree for the target based on the bounding volume hierarchy technology,thereby achieving strict acceleration of the shadow judgment process and reducing the computational complexity from the ...This paper builds a binary tree for the target based on the bounding volume hierarchy technology,thereby achieving strict acceleration of the shadow judgment process and reducing the computational complexity from the original O(N^(3))to O(N^(2)logN).Numerical results show that the proposed method is more efficient than the traditional method.It is verified in multiple examples that the proposed method can complete the convergence of the current.Moreover,the proposed method avoids the error of judging the lit-shadow relationship based on the normal vector,which is beneficial to current iteration and convergence.Compared with the brute force method,the current method can improve the simulation efficiency by 2 orders of magnitude.The proposed method is more suitable for scattering problems in electrically large cavities and complex scenarios.展开更多
●AIM:To quantify the performance of artificial intelligence(AI)in detecting glaucoma with spectral-domain optical coherence tomography(SD-OCT)images.●METHODS:Electronic databases including PubMed,Embase,Scopus,Scien...●AIM:To quantify the performance of artificial intelligence(AI)in detecting glaucoma with spectral-domain optical coherence tomography(SD-OCT)images.●METHODS:Electronic databases including PubMed,Embase,Scopus,ScienceDirect,ProQuest and Cochrane Library were searched before May 31,2023 which adopted AI for glaucoma detection with SD-OCT images.All pieces of the literature were screened and extracted by two investigators.Meta-analysis,Meta-regression,subgroup,and publication of bias were conducted by Stata16.0.The risk of bias assessment was performed in Revman5.4 using the QUADAS-2 tool.●RESULTS:Twenty studies and 51 models were selected for systematic review and Meta-analysis.The pooled sensitivity and specificity were 0.91(95%CI:0.86–0.94,I2=94.67%),0.90(95%CI:0.87–0.92,I2=89.24%).The pooled positive likelihood ratio(PLR)and negative likelihood ratio(NLR)were 8.79(95%CI:6.93–11.15,I2=89.31%)and 0.11(95%CI:0.07–0.16,I2=95.25%).The pooled diagnostic odds ratio(DOR)and area under curve(AUC)were 83.58(95%CI:47.15–148.15,I2=100%)and 0.95(95%CI:0.93–0.97).There was no threshold effect(Spearman correlation coefficient=0.22,P>0.05).●CONCLUSION:There is a high accuracy for the detection of glaucoma with AI with SD-OCT images.The application of AI-based algorithms allows together with“doctor+artificial intelligence”to improve the diagnosis of glaucoma.展开更多
Due to the spatial characteristics of orbital angular momentum,vortex fields can be applied in the fields of quantum storage and quantum information.We study the realization of spatially modulated vortex fields based ...Due to the spatial characteristics of orbital angular momentum,vortex fields can be applied in the fields of quantum storage and quantum information.We study the realization of spatially modulated vortex fields based on four-wave mixing in a four-level atomic system with a diamond structure.The intensity and spiral phase of the vortex field are effectively transferred to the generated four-wave mixing field.By changing the detuning of the probe field,the phase and intensity of the generated vertex four-wave mixing field can be changed.When the probe field takes a large detuning value,the spatial distribution of the intensity and phase of the vertex four-wave mixing field can be effectively tuned by adjusting the Rabi frequency or detuning value of the coupled field.At the same time,we also provide a detailed explanation based on the dispersion relationship,and the results agree well with our simulation results.展开更多
The Educational Adaptive-optics Solar Telescope(EAST)at the Shanghai Astronomy Museum has been running routine astronomical observations since 2021.It is a 65-cm-aperture Gregorian solar telescope for scientific educa...The Educational Adaptive-optics Solar Telescope(EAST)at the Shanghai Astronomy Museum has been running routine astronomical observations since 2021.It is a 65-cm-aperture Gregorian solar telescope for scientific education,outreach,and research.The telescope system is designed in an“open”format so that the solar tower architecture can be integrated with it,and visitors can watch the observations live from inside the tower.Equipped with adaptive optics,a high-resolution imaging system,and an integral field unit spectro-imaging system,this telescope can obtain high-resolution solar images in the TiO and Hαbands,and perform spectral image reconstruction using 400 optical fibers at selected wavelengths.It can be used not only in public education and scientific outreach but also in solar physics research.展开更多
基金funded by the National Natural Science Foundation of China(11727805,12103057)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2021378).
文摘Adaptive optics(AO)is essential for high-quality ground-based observations with large telescopes because it counters the impact of wavefront aberrations caused by atmospheric turbulence.The new vacuum solar telescope(NVST)is one of the most important high-resolution solar observation instruments in the world.Three sets of solar adaptive optics systems have been developed and installed on this telescope:conventional adaptive optics,ground layer adaptive optics,and multi-conjugate adaptive optics.These have been in operation from 2018 to 2023.This paper details the development and application of solar adaptive optics on the NVST and discusses the newest instrumentation.
基金supported by the National Natural Science Foundation of China(12061084)the Natural Science Foundation of Yunnan Province(2019FY003007).
文摘The perturbed Riemann problem for a hyperbolic system of conservation laws arising in geometrical optics with three constant initial states is solved.By studying the interactions among of the delta-shock,vacuum,and contact discontinuity,fourteen kinds of structures of Riemann solutions are obtained.The compound wave solutions consisting of delta-shocks,vacuums,and contact discontinuities are found.The single and double closed vacuum cavitations develop in solutions.Furthermore,it is shown that the solutions of the Riemann problem for the geometrical optics system are stable under certain perturbation of the initial data.Finally,the numerical results completely coinciding with theoretical analysis are presented.
文摘A 61 element adaptive optical system has been preliminary tested in the Coudé path of the 1 2m telescope at the Yunnan observatory this year. The whole system will be fully operated next year. This paper describes the AO system performances and its first experiment results, and the possible astronomical research topics.
基金Project supported by the Key Scientific Equipment Development Project of China(Grant No.ZDYZ2013-2)the National High-Tech R&D Program of China(Grant Nos.G128201-G158201 and G128603-G158603)+2 种基金the Innovation Fund of Chinese Academy of Science(Grant No.CXJJ-16M208)the Youth Innovation Promotion Association of the Chinese Academy of Sciencesthe Outstanding Young Scientists,Chinese Academy of Sciences
文摘We propose a slope-based decoupling algorithm to simultaneously control the dual deformable mirrors (DMs) in a woofer-tweeter adaptive optics system. This algorithm can directly use the woofer's response matrix measured from a Shack-Hartmann wave-front sensor to construct a slope-based orthogonal basis, and then selectively distribute the large- amplitude low-order aberration to woofer DM and the remaining aberration to tweeter DM through the slope-based orthogonal basis. At the same moment, in order to avoid the two DMs generating opposite compensation, a constraint matrix used to reset tweeter control vector is convenient to be calculated with the slope-based orthogonal basis. Numeral simulation demonstrates that this algorithm has a good performance to control the adaptive optics system with dual DMs simultaneously. Compared with the typical decoupling algorithm, this algorithm can take full use of the compensation ability of woofer DM and release the stroke of tweeter DM to compensate high-order aberration. More importantly, it does not need to measure the accurate shape of tweeter's influence function and keeps better performance of restraining the coupling error with the continuous-dynamic aberration.
基金supported by the Creative Foundation of the Chinese Academy of Sciences,China
文摘A first generation sodium Laser Guide Star Adaptive Optics System (LGS-AOS) was developed and integrated into the Lijiang 1.8 m telescope in 2013. The LGS-AOS has three sub-systems: (1) a 20W long pulsed sodium laser, (2) a 300-millimeter-diameter laser launch telescope, and (3) a 37-element com- pact adaptive optics system. On 2014 January 25, we obtained high resolution images of an my 8.18 star, HIP 43963, during the first light of the LGS-AOS. In this paper, the sodium laser, the laser launch telescope, the compact adaptive optics system and the first light results will be presented.
基金supported by the National Key Scientific and Research Equipment Development Project of China(Grant No.ZDYZ2013-2)the National Natural Science Foundation of China(Grant No.11173008)the Sichuan Provincial Outstanding Youth Academic Technology Leaders Program,China(Grant No.2012JQ0012)
文摘Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n2) ~ O(n3) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ~(O(n)3/2), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits.
基金funded by the National Natural Science Foundation of China(Grant No.11178004)
文摘The first generation solar adaptive optics (AO) system, which consists of a fine tracking loop with a tip-tilt mirror (TTM) and a correlation tracker, and a high-order correction loop with a 37-element deformable mirror (DM), a correlating Shack-Hartmann (SH) wavefront sensor (WFS) based on the ab- solute difference algorithm and a real time controller (RTC), has been developed and installed at the 1-m New Vacuum Solar Telescope (NVST) that is part of Fuxian Solar Observatory (FSO). Compared with the 37-element solar AO system developed for the 26-cm Solar Fine Structure Telescope, administered by Yunnan Astronomical Observatories, this AO system has two updates: one is the subaperture arrangement of the WFS changed from square to hexagon; the other is the high speed camera of the WFS and the corre- sponding real time controller. The WFS can be operated at a frame rate of 2100 Hz and the error correction bandwidth can exceed 100 Hz. After AO correction, the averaged residual image motion and the averaged RMS wavefront error are reduced to 0.06" and 45 nm, respectively. The results of on-sky testing obser- vations demonstrate better contrast and finer structures of the images taken with AO than those without AO.
基金supported by the National Magnetic Confinement Fusion Energy Program of China(Nos.2009GB107001 and 2014GB109002)
文摘A front-end optics system has been developed for the EAST microwave imaging reflectometry for 2D density fluctuation measurement.Via the transmitter optics system,a combination of eight transmitter beams with independent frequencies is employed to illuminate wide poloidal regions on eight distinct cutoff layers.The receiver optics collect the reflected wavefront and project them onto the vertical detector array with 12 antennas.Utilizing optimized Field Curvature adjustment lenses in the receiver optics,the front-end optics system provides a flexible and perfect matching between the image plane and a specified cutoff layer in the plasma,which ensures the correct data interpretation of density fluctuation measurement.
文摘Ground Layer Adaptive Optics (GLAO) is a recently developed technique extensively applied to ground-based telescopes, which mainly compensates for the wavefront errors induced by ground-layer turbulence to get an appropriate point spread function in a wide field of view. The compensation results mainly depend on the turbu-lence distribution. The atmospheric turbulence at Dome A in the Antarctic is mainly distributed below 15 meters, which is an ideal site for applications of GLAO. The GLAO system has been simulated for the Kunlun Dark Universe Survey Telescope, which will be set up at Dome A, and uses a rotating mirror to generate several laser guide stars and a wavefront sensor with a wide field of view to sequentially measure the wavefronts from different laser guide stars. The system is simulated on a computer and parameters of the system are given, which provide detailed information about the design of a practical GLAO system.
基金financial supports from the National Natural Science Foundation of China (No.62175242,U20A20217,61975210,and 62305345)China Postdoctoral Science Foundation (2021T140670)。
文摘Catenary optics enables metasurfaces with higher efficiency and wider bandwidth,and is highly anticipated in the imaging system,super-resolution lithography,and broadband absorbers.However,the periodic boundary approximation without considering aperiodic electromagnetic crosstalk poses challenges for catenary optical devices to reach their performance limits.Here,perfect control of both local geometric and propagation phases is realized through field-driven optimization,in which the field distribution is calculated under real boundary conditions.Different from other optimization methods requiring a mass of iterations,the proposed design method requires less than ten iterations to get the efficiency close to the optimal value.Based on the library of shape-optimized catenary structures,centimeter-scale devices can be designed in ten seconds,with the performance improved by ~15%.Furthermore,this method has the ability to extend catenary-like continuous structures to arbitrary polarization,including both linear and elliptical polarizations,which is difficult to achieve with traditional design methods.It provides a way for the development of catenary optics and serves as a potent tool for constructing high-performance optical devices.
基金funding from the National Natural Science Foundation of China(NSFC)under grants 61627827,61705068the Natural Science Foundation of Fujian Province 2021J01813the Fujian Medical University Research Foundation of Talented Scholars XRCZX2021004.
文摘In this work,we present an intravascular dual-mode endoscopic system capable of both intravascular photoacoustic imaging(IVPAI)and intravascular optical coherence tomography(IVOCT)for recognizing spontaneous coronary artery dissection(SCAD)phantoms.IVPAI provides high-resolution and high-penetration images of intramural hematoma(IMH)at different depths,so it is especially useful for imaging deep blood clots associated with imaging phantoms.IVOCT can readily visualize the double-lumen morphology of blood vessel walls to identify intimal tears.We also demonstrate the capability of this dual-mode endoscopic system using mimicking phantoms and biological samples of blood clots in ex vivo porcine arteries.The results of the experiments indicate that the combined IVPAI and IVOCT technique has the potential to provide a more accurate SCAD assessment method for clinical applications.
基金the support from the National Key Research and Development Program of China[2018YFA0703400].
文摘The infrared conformal window is one of the most critical components in aircraft.Conformal windows with high performance bring low aberrations,high aerodynamic performance,reliability in extreme working environments,and added value for aircraft.Through the past decades,remarkable advances have been achieved in manufacturing technologies for conformal windows,where the machining accuracy approaches the nanometer level,and the surface form becomes more complex.These advances are critical to aircraft development,and these manufacturing technologies also have significant reference values for other directions of the ultra-precision machining field.In this review,the infrared materials suitable for manufacturing conformal windows are introduced and compared with insights into their performances.The remarkable advances and concrete work accomplished by researchers are reviewed.The challenges in manufacturing conformal windows that should be faced in the future are discussed.
文摘Nano-optics is an emergent research field in physics that appeared in the 1980s,which deals with light–matter optical interactions at the nanometer scale.In early studies of nano-optics,the main concern focus is to obtain higher optical resolution over the diffraction limit.The researches of near-field imaging and spectroscopy based on scanning near-field optical microscopy(SNOM)are developed.The exploration of improving SNOM probe for near-field detection leads to the emergence of surface plasmons.In the sense of resolution and wider application,there has been a significant transition from seeking higher resolution microscopy to plasmonic near-field modulations in the nano-optics community during the nano-optic development.Nowadays,studies of nano-optics prefer the investigation of plasmonics in different material systems.In this article,the history of the development of near-field optics is briefly reviewed.The difficulties of conventional SNOM to achieve higher resolution are discussed.As an alternative solution,surface plasmons have shown the advantages of higher resolution,wider application,and flexible nano-optical modulation for new devices.The typical studies in different periods are introduced and characteristics of nano-optics in each stage are analyzed.In this way,the evolution progress from near-field optics to plasmonics of nano-optics research is presented.The future development of nano-optics is discussed then.
基金support from the National Research Foundation (NRF) Singapore, under its Competitive Research Programme Award NRF-CRP20-20170004 and NRF Investigatorship Award NRF-NRFI06-20200005MTC Programmatic Grant M21J9b0085, as well as the Lite-On Project RS-INDUS-00090+5 种基金support from Australian Research Council (DE220101085, DP220102152)grants from German Research Foundation (SCHM2655/15-1, SCHM2655/21-1)Lee-Lucas Chair in Physics and funding by the Australian Research Council DP220102152financial support from the National Natural Science Foundation of China (Grant No. 62275078)Natural Science Foundation of Hunan Province of China (Grant No. 2022JJ20020)Shenzhen Science and Technology Program (Grant No. JCYJ20220530160405013)
文摘Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio frequencies and impact research activities and our daily lives.Traditional glass lenses are fabricated through a series of complex processes,while polymers offer versatility and ease of production.However,modern applications often require complex lens assemblies,driving the need for miniaturization and advanced designs with micro-and nanoscale features to surpass the capabilities of traditional fabrication methods.Three-dimensional(3D)printing,or additive manufacturing,presents a solution to these challenges with benefits of rapid prototyping,customized geometries,and efficient production,particularly suited for miniaturized optical imaging devices.Various 3D printing methods have demonstrated advantages over traditional counterparts,yet challenges remain in achieving nanoscale resolutions.Two-photon polymerization lithography(TPL),a nanoscale 3D printing technique,enables the fabrication of intricate structures beyond the optical diffraction limit via the nonlinear process of two-photon absorption within liquid resin.It offers unprecedented abilities,e.g.alignment-free fabrication,micro-and nanoscale capabilities,and rapid prototyping of almost arbitrary complex 3D nanostructures.In this review,we emphasize the importance of the criteria for optical performance evaluation of imaging devices,discuss material properties relevant to TPL,fabrication techniques,and highlight the application of TPL in optical imaging.As the first panoramic review on this topic,it will equip researchers with foundational knowledge and recent advancements of TPL for imaging optics,promoting a deeper understanding of the field.By leveraging on its high-resolution capability,extensive material range,and true 3D processing,alongside advances in materials,fabrication,and design,we envisage disruptive solutions to current challenges and a promising incorporation of TPL in future optical imaging applications.
文摘As a natural mathematical form,a catenary is the curve that a hanging chain or cable adopts under its own weight when supported at its ends in a homogeneous gravitational field.This unique shape arises from the balance of forces acting on each segment of the chain,resulting in a curve described by hyperbolic cosine functions.Catenary functions play pivotal roles in describing the electromagnetic field,intensity distribution,and dispersion of structured light on the sub-wavelength scale^(1).
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12365003,12364024,and 11864014)the Jiangxi Provincial Natural Science Foundation(Grant Nos.20212BAB201014 and 20224BAB201023)。
文摘We theoretically investigate coherent scattering of single photons and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system.Using the real-space Hamiltonian,analytical expressions are derived for the transport spectra scattered by these two giant atoms with four azimuthal angles.Fano-like resonance can be exhibited in the scattering spectra by adjusting the azimuthal angle difference.High concurrence of the entangled state for two atoms can be implemented in a wide angle-difference range,and the entanglement of the atomic states can be switched on/off by modulating the additional azimuthal angle differences from the giant atoms.This suggests a novel handle to effectively control the single-photon scattering and quantum entanglement.
基金the National Natural Science Foundation of China under Grants No.62231021 and No.92373201.
文摘This paper builds a binary tree for the target based on the bounding volume hierarchy technology,thereby achieving strict acceleration of the shadow judgment process and reducing the computational complexity from the original O(N^(3))to O(N^(2)logN).Numerical results show that the proposed method is more efficient than the traditional method.It is verified in multiple examples that the proposed method can complete the convergence of the current.Moreover,the proposed method avoids the error of judging the lit-shadow relationship based on the normal vector,which is beneficial to current iteration and convergence.Compared with the brute force method,the current method can improve the simulation efficiency by 2 orders of magnitude.The proposed method is more suitable for scattering problems in electrically large cavities and complex scenarios.
文摘●AIM:To quantify the performance of artificial intelligence(AI)in detecting glaucoma with spectral-domain optical coherence tomography(SD-OCT)images.●METHODS:Electronic databases including PubMed,Embase,Scopus,ScienceDirect,ProQuest and Cochrane Library were searched before May 31,2023 which adopted AI for glaucoma detection with SD-OCT images.All pieces of the literature were screened and extracted by two investigators.Meta-analysis,Meta-regression,subgroup,and publication of bias were conducted by Stata16.0.The risk of bias assessment was performed in Revman5.4 using the QUADAS-2 tool.●RESULTS:Twenty studies and 51 models were selected for systematic review and Meta-analysis.The pooled sensitivity and specificity were 0.91(95%CI:0.86–0.94,I2=94.67%),0.90(95%CI:0.87–0.92,I2=89.24%).The pooled positive likelihood ratio(PLR)and negative likelihood ratio(NLR)were 8.79(95%CI:6.93–11.15,I2=89.31%)and 0.11(95%CI:0.07–0.16,I2=95.25%).The pooled diagnostic odds ratio(DOR)and area under curve(AUC)were 83.58(95%CI:47.15–148.15,I2=100%)and 0.95(95%CI:0.93–0.97).There was no threshold effect(Spearman correlation coefficient=0.22,P>0.05).●CONCLUSION:There is a high accuracy for the detection of glaucoma with AI with SD-OCT images.The application of AI-based algorithms allows together with“doctor+artificial intelligence”to improve the diagnosis of glaucoma.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11704151 and 11247201)the Twelfth Five-year Program for Science and Technology of Education Department of Jilin Province (Grant No.20150215)。
文摘Due to the spatial characteristics of orbital angular momentum,vortex fields can be applied in the fields of quantum storage and quantum information.We study the realization of spatially modulated vortex fields based on four-wave mixing in a four-level atomic system with a diamond structure.The intensity and spiral phase of the vortex field are effectively transferred to the generated four-wave mixing field.By changing the detuning of the probe field,the phase and intensity of the generated vertex four-wave mixing field can be changed.When the probe field takes a large detuning value,the spatial distribution of the intensity and phase of the vertex four-wave mixing field can be effectively tuned by adjusting the Rabi frequency or detuning value of the coupled field.At the same time,we also provide a detailed explanation based on the dispersion relationship,and the results agree well with our simulation results.
基金supported by the Shanghai Municipal People’s Government
文摘The Educational Adaptive-optics Solar Telescope(EAST)at the Shanghai Astronomy Museum has been running routine astronomical observations since 2021.It is a 65-cm-aperture Gregorian solar telescope for scientific education,outreach,and research.The telescope system is designed in an“open”format so that the solar tower architecture can be integrated with it,and visitors can watch the observations live from inside the tower.Equipped with adaptive optics,a high-resolution imaging system,and an integral field unit spectro-imaging system,this telescope can obtain high-resolution solar images in the TiO and Hαbands,and perform spectral image reconstruction using 400 optical fibers at selected wavelengths.It can be used not only in public education and scientific outreach but also in solar physics research.