The ground-state energy level (GEL) and electron distribution of GaAs pseudomorphic high-electron-mobility transistors (PHEMTs) are analyzed by a self-consistent solution to the Schrodinger-Poisson equations. The ...The ground-state energy level (GEL) and electron distribution of GaAs pseudomorphic high-electron-mobility transistors (PHEMTs) are analyzed by a self-consistent solution to the Schrodinger-Poisson equations. The indium composition and thickness of the InGaAs channel are optimized according to the GEL position. The GEL position is not in direct proportion to 1/d^2 (d is the channel thickness) by considering the influence of electron distribution in the InGaAs channel. Indium composition 0.22 and channel thickness 9 nm are obtained by considering the mismatch between InGaAs and AlGaAs. Several PHEMT samples are grown according to the theoretical results and mobility 6300 cm^2 /V.s is achieved.展开更多
Hydraulic valve block is an important part of the hydraulic system.The traditional hydraulic valve block is made by turning and milling,drilling and boring,which leads to many right-angle bending and closed cavity str...Hydraulic valve block is an important part of the hydraulic system.The traditional hydraulic valve block is made by turning and milling,drilling and boring,which leads to many right-angle bending and closed cavity structure of process holes in its internal flow channel,seriously affecting the flow performance of oil.Based on the new design space provided by additive manufacturing technology,the internal hydraulic flow channel of valve block is optimized by using B-spline curve.Computational fluid dynamics analysis is carried out on the hydraulic flow channel to determine the optimal flow channel structure with the smallest pressure drop.The weight reduction of hydraulic valve block is carried out through topology optimization.According to the results of topology optimization,using the method of selective laser melting(SLM),the printing of the hydraulic valve block is completed.The optimized hydraulic channel reduces the pressure loss by 31.4%compared with the traditional hydraulic channel.Compared with the traditional valve block,the hydraulic valve block manufactured by SLM with topology optimization reduces the weight by 33.9%.Therefore,the proposed flow channel optimization and valve block lightweight method provide a new reference for the performance improvement of the internal flow channel of hydraulic valve block and the overall lightweight design of valve block.展开更多
In this paper,we propose a novel deep learning(DL)-based receiver design for orthogonal frequency division multiplexing(OFDM)systems.The entire process of channel estimation,equalization,and signal detection is replac...In this paper,we propose a novel deep learning(DL)-based receiver design for orthogonal frequency division multiplexing(OFDM)systems.The entire process of channel estimation,equalization,and signal detection is replaced by a neural network(NN),and hence,the detector is called a NN detector(N^(2)D).First,an OFDM signal model is established.We analyze both temporal and spectral characteristics of OFDM signals,which are the motivation for DL.Then,the generated data based on the simulation of channel statistics is used for offline training of bi-directional long short-term memory(Bi-LSTM)NN.Especially,a discriminator(F)is added to the input of Bi-LSTM NN to look for subcarrier transmission data with optimal channel gain(OCG),which can greatly improve the performance of the detector.Finally,the trained N^(2)D is used for online recovery of OFDM symbols.The performance of the proposed N^(2)D is analyzed theoretically in terms of bit error rate(BER)by Monte Carlo simulation under different parameter scenarios.The simulation results demonstrate that the BER of N^(2)D is obviously lower than other algorithms,especially at high signal-to-noise ratios(SNRs).Meanwhile,the proposed N^(2)D is robust to the fluctuation of parameter values.展开更多
Nerve guidance channels are limited by lack of topographical guidance:Treatment of sizeable nerve gaps remains problematic following peripheral nerve injury.Functional outcomes are good when neurorrhaphy,or direct en...Nerve guidance channels are limited by lack of topographical guidance:Treatment of sizeable nerve gaps remains problematic following peripheral nerve injury.Functional outcomes are good when neurorrhaphy,or direct end-to-end suture repair,is possible.The problem arises when there is significant segmental loss,which can occur following trauma as well as oncological procedures.展开更多
As the scale of power networks has expanded,the demand for multi-service transmission has gradually increased.The emergence of WiFi6 has improved the transmission efficiency and resource utilization of wireless networ...As the scale of power networks has expanded,the demand for multi-service transmission has gradually increased.The emergence of WiFi6 has improved the transmission efficiency and resource utilization of wireless networks.However,it still cannot cope with situations such as wireless access point(AP)failure.To solve this problem,this paper combines orthogonal fre-quency division multiple access(OFDMA)technology and dynamic channel optimization technology to design a fault-tolerant WiFi6 dynamic resource optimization method for achieving high quality wireless services in a wirelessly covered network even when an AP fails.First,under the premise of AP layout with strong coverage over the whole area,a faulty AP determination method based on beacon frames(BF)is designed.Then,the maximum signal-to-interference ratio(SINR)is used as the principle to select AP reconnection for the affected users.Finally,this paper designs a dynamic access selection model(DASM)for service frames of power Internet of Things(IoTs)and a schedul-ing access optimization model(SAO-MF)based on multi-frame transmission,which enables access optimization for differentiated services.For the above mechanisms,a heuristic resource allocation algorithm is proposed in SAO-MF.Simulation results show that the method can reduce the delay by 15%and improve the throughput by 55%,ensuring high-quality communication in power wireless networks.展开更多
How to reduce interference among neighbor nodes in wireless mesh networks is still an important and key issue nowa- days. In this paper, an optimized channel assignment algorithm (OCA) is proposed to solve this prob...How to reduce interference among neighbor nodes in wireless mesh networks is still an important and key issue nowa- days. In this paper, an optimized channel assignment algorithm (OCA) is proposed to solve this problem based on link throughput and node priority. The effects of the numbers of network interface cards and channels on the network throughput are analyzed and evaluated, When there are seven of the numbers of both network interface cards and channels, the efficiency of utilizing network interface card and channel reaches highest. Compared with cen- tralized channel assignment algorithm (CCA), the proposed algo- rithm has less packet loss rate and more network throughput sig- nificantly.展开更多
文摘The ground-state energy level (GEL) and electron distribution of GaAs pseudomorphic high-electron-mobility transistors (PHEMTs) are analyzed by a self-consistent solution to the Schrodinger-Poisson equations. The indium composition and thickness of the InGaAs channel are optimized according to the GEL position. The GEL position is not in direct proportion to 1/d^2 (d is the channel thickness) by considering the influence of electron distribution in the InGaAs channel. Indium composition 0.22 and channel thickness 9 nm are obtained by considering the mismatch between InGaAs and AlGaAs. Several PHEMT samples are grown according to the theoretical results and mobility 6300 cm^2 /V.s is achieved.
基金supported by the National Natural Science Foundation of China(No.51775273)the Jiangsu Province Science and Technology Support Plan Project(No.BE2018010-2)+2 种基金the National Defence Basic Scientific Research Program of China(No.JCKY2018605C010)the Frontiers of Science and Technology Program of China (No.1816312ZT00406301)the Aeronautical Science Foundation of China(No.2020Z049052002)
文摘Hydraulic valve block is an important part of the hydraulic system.The traditional hydraulic valve block is made by turning and milling,drilling and boring,which leads to many right-angle bending and closed cavity structure of process holes in its internal flow channel,seriously affecting the flow performance of oil.Based on the new design space provided by additive manufacturing technology,the internal hydraulic flow channel of valve block is optimized by using B-spline curve.Computational fluid dynamics analysis is carried out on the hydraulic flow channel to determine the optimal flow channel structure with the smallest pressure drop.The weight reduction of hydraulic valve block is carried out through topology optimization.According to the results of topology optimization,using the method of selective laser melting(SLM),the printing of the hydraulic valve block is completed.The optimized hydraulic channel reduces the pressure loss by 31.4%compared with the traditional hydraulic channel.Compared with the traditional valve block,the hydraulic valve block manufactured by SLM with topology optimization reduces the weight by 33.9%.Therefore,the proposed flow channel optimization and valve block lightweight method provide a new reference for the performance improvement of the internal flow channel of hydraulic valve block and the overall lightweight design of valve block.
基金supported in part by the National Natural Science Foundation of China No.62001220the Natural Science Foundation of Jiangsu Province BK20200440the Fundamental Research Funds for the Central Universities No.1004-YAH20016,No.NT2020009。
文摘In this paper,we propose a novel deep learning(DL)-based receiver design for orthogonal frequency division multiplexing(OFDM)systems.The entire process of channel estimation,equalization,and signal detection is replaced by a neural network(NN),and hence,the detector is called a NN detector(N^(2)D).First,an OFDM signal model is established.We analyze both temporal and spectral characteristics of OFDM signals,which are the motivation for DL.Then,the generated data based on the simulation of channel statistics is used for offline training of bi-directional long short-term memory(Bi-LSTM)NN.Especially,a discriminator(F)is added to the input of Bi-LSTM NN to look for subcarrier transmission data with optimal channel gain(OCG),which can greatly improve the performance of the detector.Finally,the trained N^(2)D is used for online recovery of OFDM symbols.The performance of the proposed N^(2)D is analyzed theoretically in terms of bit error rate(BER)by Monte Carlo simulation under different parameter scenarios.The simulation results demonstrate that the BER of N^(2)D is obviously lower than other algorithms,especially at high signal-to-noise ratios(SNRs).Meanwhile,the proposed N^(2)D is robust to the fluctuation of parameter values.
文摘Nerve guidance channels are limited by lack of topographical guidance:Treatment of sizeable nerve gaps remains problematic following peripheral nerve injury.Functional outcomes are good when neurorrhaphy,or direct end-to-end suture repair,is possible.The problem arises when there is significant segmental loss,which can occur following trauma as well as oncological procedures.
基金supported by State Grid Jiangsu Electric Power Co.,Ltd.Science and Technology Project“Research on Low-Cost Wireless Coverage and Trusted Access Technologies for Underground Pipe Gallery Digital Network”(J2021081).
文摘As the scale of power networks has expanded,the demand for multi-service transmission has gradually increased.The emergence of WiFi6 has improved the transmission efficiency and resource utilization of wireless networks.However,it still cannot cope with situations such as wireless access point(AP)failure.To solve this problem,this paper combines orthogonal fre-quency division multiple access(OFDMA)technology and dynamic channel optimization technology to design a fault-tolerant WiFi6 dynamic resource optimization method for achieving high quality wireless services in a wirelessly covered network even when an AP fails.First,under the premise of AP layout with strong coverage over the whole area,a faulty AP determination method based on beacon frames(BF)is designed.Then,the maximum signal-to-interference ratio(SINR)is used as the principle to select AP reconnection for the affected users.Finally,this paper designs a dynamic access selection model(DASM)for service frames of power Internet of Things(IoTs)and a schedul-ing access optimization model(SAO-MF)based on multi-frame transmission,which enables access optimization for differentiated services.For the above mechanisms,a heuristic resource allocation algorithm is proposed in SAO-MF.Simulation results show that the method can reduce the delay by 15%and improve the throughput by 55%,ensuring high-quality communication in power wireless networks.
基金Supported by the Scientific Research Fund of Liaoning Province(L2013433)
文摘How to reduce interference among neighbor nodes in wireless mesh networks is still an important and key issue nowa- days. In this paper, an optimized channel assignment algorithm (OCA) is proposed to solve this problem based on link throughput and node priority. The effects of the numbers of network interface cards and channels on the network throughput are analyzed and evaluated, When there are seven of the numbers of both network interface cards and channels, the efficiency of utilizing network interface card and channel reaches highest. Compared with cen- tralized channel assignment algorithm (CCA), the proposed algo- rithm has less packet loss rate and more network throughput sig- nificantly.