This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide...This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources.展开更多
A linear quadratic optimal direct track-keeping control law was proposed based on first-order Nomoto nominal model. Furthermore, based on Lyapunov stabilized theory, considering parametric uncertainty from variations ...A linear quadratic optimal direct track-keeping control law was proposed based on first-order Nomoto nominal model. Furthermore, based on Lyapunov stabilized theory, considering parametric uncertainty from variations of ship speed and disturbances uncertain from wind, wave and sea current, a direct compensative robust optimal control (DCROC) law was developed. It can guarantee closed-loop system globally and uniformly converge to a remained set. High accuracy and robustness were achieved. By introducing some nonlinear blocks, closed-loop system achieves global and uniform asymptotical stableness. Numerical simulations on a Mariner Class ship are presented to validate the control law.展开更多
This paper has investigated how the optimization methods can be used to deal with plant uncertainty in linear feedback control design. Firstly, we define a weighted sensitivity error function based on robust redesign...This paper has investigated how the optimization methods can be used to deal with plant uncertainty in linear feedback control design. Firstly, we define a weighted sensitivity error function based on robust redesign. Then, by modifying the nominal controller to minimize the variance of the actual system performanee from the desired performance over the whole frequency range, we obtain an optimal robust design method for a class of stochastic model errors. Moreover, the result can be used to give a good prediction to the achievable average tracking performance and control energy for practical system designs. The validity of obtained results can be illustrated by the simulation research.展开更多
The largest robust stability radius r(P0) of a system P0 is defined as the radius of the largest ball Bmax in the gap metric centered at P0 which can be stabilized by one single controller. Any controller which stabil...The largest robust stability radius r(P0) of a system P0 is defined as the radius of the largest ball Bmax in the gap metric centered at P0 which can be stabilized by one single controller. Any controller which stabilizes Bmax is called an optimally robust controller of P0. Any controller, regarded as a system, should have its own largest robust stability radius also. In this paper it is shown that the largest robust stability radius of any optimally robust controller of P0 is larger than or equal to r(Po). Moreover, the variation of the closed-loop transfer matrix caused by the perturbation of the system is estimated.展开更多
Because of the tire nonlinearity and vehicle's parameters'uncertainties,robust control methods based on the worst cases,such as H_∞,μsynthesis,have been widely used in active front steering control,however,in orde...Because of the tire nonlinearity and vehicle's parameters'uncertainties,robust control methods based on the worst cases,such as H_∞,μsynthesis,have been widely used in active front steering control,however,in order to guarantee the stability of active front steering system(AFS)controller,the robust control is at the cost of performance so that the robust controller is a little conservative and has low performance for AFS control.In this paper,a generalized internal model robust control(GIMC)that can overcome the contradiction between performance and stability is used in the AFS control.In GIMC,the Youla parameterization is used in an improved way.And GIMC controller includes two sections:a high performance controller designed for the nominal vehicle model and a robust controller compensating the vehicle parameters'uncertainties and some external disturbances.Simulations of double lane change(DLC)maneuver and that of braking on split-μroad are conducted to compare the performance and stability of the GIMC control,the nominal performance PID controller and the H_∞controller.Simulation results show that the high nominal performance PID controller will be unstable under some extreme situations because of large vehicle's parameters variations,H_∞controller is conservative so that the performance is a little low,and only the GIMC controller overcomes the contradiction between performance and robustness,which can both ensure the stability of the AFS controller and guarantee the high performance of the AFS controller.Therefore,the GIMC method proposed for AFS can overcome some disadvantages of control methods used by current AFS system,that is,can solve the instability of PID or LQP control methods and the low performance of the standard H_∞controller.展开更多
A compliant landing strategy for a trotting quadruped robot on unknown rough terrains based on contact force control is presented. Firstly, in order to lower the disturbance caused by the landing impact force, a landi...A compliant landing strategy for a trotting quadruped robot on unknown rough terrains based on contact force control is presented. Firstly, in order to lower the disturbance caused by the landing impact force, a landing phase is added between the swing phase and the stance phase, where the desired contact force is set as a small positive constant. Secondly, the joint torque optimization of the stance legs is formulated as a quadratic programming(QP) problem subject to equality and inequality/bound constraints. And a primal-dual dynamical system solver based on linear variational inequalities(LVI) is applied to solve this QP problem. Furthermore, based on the optimization results, a hybrid motion/force robust controller is designed to realize the tracking of the contact force, while the constraints of the stance feet landing angles are fulfilled simultaneously. Finally, the experiments are performed to validate the proposed methods.展开更多
A feedforward approach for generating near time optimal controller for flexible spacecraft rest-to-rest maneuvers is presented with the objective insensitivity to modeling errors, parameter uncertainty and minimizing ...A feedforward approach for generating near time optimal controller for flexible spacecraft rest-to-rest maneuvers is presented with the objective insensitivity to modeling errors, parameter uncertainty and minimizing the residual energy of the flexible modes. The perturbation estimation of flexible appendages to the rigid-hub is accomplished simply via compare the output of real plant with the reference model, and the approach is based on combine this estimation with the bang-bang control for the rigid-hub modes through analysis the basic constraint and the additional constraint, i.e. zero coupling torque and zero coupling torque derivative for general two orders system and three orders system with considerate attitude acceleration mode near time optimal controls. These time optimal controls with control constraints and state constraints leads to forming a boundary-value problem, and resolved the problem using an iterative numerical algorithm. The near time optimal control with perturbation estimation shows a good robust to parameter uncertainty and can suppress the vibration and minimizing the residual energy. The capability of this approach is demonstrated through a numerical example in detail.展开更多
An agile missile with tail fins and pulse thrusters has continuous and discontinuous control inputs.This brings certain difficulty to the autopilot design and stability analysis.Indirect robust control via Theta-D tec...An agile missile with tail fins and pulse thrusters has continuous and discontinuous control inputs.This brings certain difficulty to the autopilot design and stability analysis.Indirect robust control via Theta-D technique is employed to handle this problem.An acceleration tracking system is formulated based on the nonlinear dynamics of agile missile.Considering the dynamics of actuators,there is an error between actual input and computed input.A robust control problem is formed by treating the error as input uncertainty.The robust control is equivalent to a nonlinear quadratic optimal control of the nominal system with a modified performance index including uncertainty bound.Theta-D technique is applied to solve the nonlinear optimal control problem to obtain the final control law.Numerical results show the effectiveness and robustness of the proposed strategy.展开更多
Multi-objective robust state-feedback controller synthesis problems for linear discrete-time uncertain systems are addressed. Based on parameter-dependent Lyapunov functions, the Gl2 and GH2 norm expressed in terms of...Multi-objective robust state-feedback controller synthesis problems for linear discrete-time uncertain systems are addressed. Based on parameter-dependent Lyapunov functions, the Gl2 and GH2 norm expressed in terms of LMI (Linear Matrix Inequality) characterizations are further generalized to cope with the robust analysis for convex polytopic uncertain system. Robust state-feedback controller synthesis conditions are also derived for this class of uncertain systems. Using the above results, multi-objective state-feedback controller synthesis procedures which involve the LMI optimization technique are developed and less conservative than the existing one. An illustrative example verified the validity of the approach.展开更多
The robust stability study of the classic Smith predictor-based control system for uncertain fractional-order plants with interval time delays and interval coefficients is the emphasis of this work.Interval uncertaint...The robust stability study of the classic Smith predictor-based control system for uncertain fractional-order plants with interval time delays and interval coefficients is the emphasis of this work.Interval uncertainties are a type of parametric uncertainties that cannot be avoided when modeling real-world plants.Also,in the considered Smith predictor control structure it is supposed that the controller is a fractional-order proportional integral derivative(FOPID)controller.To the best of the authors'knowledge,no method has been developed until now to analyze the robust stability of a Smith predictor based fractional-order control system in the presence of the simultaneous uncertainties in gain,time-constants,and time delay.The three primary contributions of this study are as follows:ⅰ)a set of necessary and sufficient conditions is constructed using a graphical method to examine the robust stability of a Smith predictor-based fractionalorder control system—the proposed method explicitly determines whether or not the FOPID controller can robustly stabilize the Smith predictor-based fractional-order control system;ⅱ)an auxiliary function as a robust stability testing function is presented to reduce the computational complexity of the robust stability analysis;andⅲ)two auxiliary functions are proposed to achieve the control requirements on the disturbance rejection and the noise reduction.Finally,four numerical examples and an experimental verification are presented in this study to demonstrate the efficacy and significance of the suggested technique.展开更多
The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear sy...The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear system into a linear one and an optimal LQR is designed for the corresponding nominal system. Then, based on the integral sliding mode, a design approach to robustifying the optimal regulator is studied. As a result, the system exhibits global robustness to uncertainties and the ideal sliding mode dynamics is the same as that of the optimal LQR for the nominal system. A global robust optimal sliding mode control (GROSMC) is realized. Finally, a numerical simulation is demonstrated to show the effectiveness and superiority of the proposed algorithm compared with the conventional optimal LQR.展开更多
Anaerobic-anoxic-oxic(A_2O) reactors, as the core parts of wastewater treatment process(WWTP), have attracted considerable attention to achieve the reliability of denitrification and dephosphorization. However, it is ...Anaerobic-anoxic-oxic(A_2O) reactors, as the core parts of wastewater treatment process(WWTP), have attracted considerable attention to achieve the reliability of denitrification and dephosphorization. However, it is difficult to realize the optimal operation of A_2O reactors due to the existence of nonlinear dynamics and large uncertainties. To solve this problem, a robust optimal control(ROC) strategy is developed to improve the operation performance of A_2O reactors. First, data-driven systematic evaluation criteria are developed to describe the operational indicators of changeable conditions. Second, a robust optimization algorithm is designed to select the optimal solution. Third, a fuzzy neural network(FNN) is used to track the optimal solution in the control process. Finally, this proposed ROC strategy is applied to the phosphorus removal benchmark simulation model(BSM1-P) and the real A_2O reactors. The results demonstrate that the strategy developed in this paper has great potential for application in real A_2O reactors.展开更多
A robust optimal output tracking control method for a midwater trawl system is investigated based on T-S fuzzy nonlinear model. A simplified nonlinear mathematical model is first employed to represent a midwater trawl...A robust optimal output tracking control method for a midwater trawl system is investigated based on T-S fuzzy nonlinear model. A simplified nonlinear mathematical model is first employed to represent a midwater trawl system, and then a T-S fuzzy model is adopted to approximate the nonlinear system. Since the strong nonlinearities and the external disturbance of the trawling system, a mixed H2/H∞ fuzzy output tracking control strategy via T-S fuzzy system is proposed to regulate the trawl depth to follow a desired trajectory. The trawl depth can be regulated by adjusting the winch velocity automatically and the tracking error can be minimized according to the robust optimal criterion. In order to validate the proposed control method, a computer simulation is conducted. The simulation results indicate that the proposed fuzzy robust optimal controller make the trawl net rapidly follow the desired trajectory under the model uncertainties and the extemal disturbance caused by wave and current.展开更多
A distributionally robust model predictive control(DRMPC)scheme is proposed based on neural network(NN)modeling to achieve the trajectory tracking control of robot manipulators with state and control torque constraint...A distributionally robust model predictive control(DRMPC)scheme is proposed based on neural network(NN)modeling to achieve the trajectory tracking control of robot manipulators with state and control torque constraints.First,an NN is used to fit the motion data of robot manipulators for data-driven dynamic modeling,converting it into a linear prediction model through gradients.Then,by statistically analyzing the stochastic characteristics of the NN modeling errors,a distributionally robust model predictive controller is designed based on the chance constraints,and the optimization problem is transformed into a tractable quadratic programming(QP)problem under the distributionally robust optimization(DRO)framework.The recursive feasibility and convergence of the proposed algorithm are proven.Finally,the effectiveness of the proposed algorithm is verified through numerical simulation.展开更多
To meet the requirements of modern air combat,an integrated fire/flight control(IFFC)system is designed to achieve automatic precision tracking and aiming for armed helicopters and release the pilot from heavy target ...To meet the requirements of modern air combat,an integrated fire/flight control(IFFC)system is designed to achieve automatic precision tracking and aiming for armed helicopters and release the pilot from heavy target burden.Considering the complex dynamic characteristics and the couplings of armed helicopters,an improved automatic attack system is con-structed to integrate the fire control system with the flight con-trol system into a unit.To obtain the optimal command signals,the algorithm is investigated to solve nonconvex optimization problems by the contracting Broyden Fletcher Goldfarb Shanno(C-BFGS)algorithm combined with the trust region method.To address the uncertainties in the automatic attack system,the memory nominal distribution and Wasserstein distance are introduced to accurately characterize the uncertainties,and the dual solvable problem is analyzed by using the duality the-ory,conjugate function,and dual norm.Simulation results verify the practicality and validity of the proposed method in solving the IFFC problem on the premise of satisfactory aiming accu-racy.展开更多
Flatness is one of the most important criterion factors to evaluate the quality of the steel strip. To improve the strip' s flatness quality, the most frequently used methodology is to employ the closed-loop automati...Flatness is one of the most important criterion factors to evaluate the quality of the steel strip. To improve the strip' s flatness quality, the most frequently used methodology is to employ the closed-loop automatic shape control system. However, in the shape control system, the shape-meter is always installed at the down way of the exit of the cold rolling mill and can not sense the changes of the strip flatness in the rolling gap directly. This kind of installation results in the delay of the feedback in the control system. Therefore, the stability and response performance of the system are strongly affected by the delay. At present, there is still no mature way to design controllers for systems with time delay. Although the conventional PID controller used in most practical applications has the capability to compensate the delay, the effect of the compensation is limited, especially for the systems with long time delay. Smith predictor, as a compensator for solving this problem, is now widely used in industry systems. However, the request of highly precise model of the system and the poor adaptive performance to the changes of related parameters limit the application of the Smith predictor in practice. In order to overcome the drawbacks of the Smith predictor, a new Smith predictor based on single neural network PID (SNN-PID) is proposed. Because the single neural network is employed into the Smith predictor to improve the controller's self-adaptability, the adaptive capability to the varying parameters of the system is improved. Meanwhile, for the purpose of solving the problems such as time-consuming and complicated calculation of the neural networks in real time, the learning coefficient of neural network is divided into several stages as usually done in expert control system. Therefore, the control system can obtain fast response due to the improved calculation speed of the neural networks. In order to validate the performance of the proposed controller, the experiment is conducted on the shape control system in a 300 mm four-high reversing cold rolling mill. The experimental results show that the SNN-PID with Smith predictor controller can effectively compensate the delay effects and achieve better control performance than the conventional PID controller.展开更多
An analytical tuning method was proposed for fuzzy PID controller used in Smith predictor in order to extend its application and improve its robustness. The fuzzy PID controller was expressed as a sliding mode control...An analytical tuning method was proposed for fuzzy PID controller used in Smith predictor in order to extend its application and improve its robustness. The fuzzy PID controller was expressed as a sliding mode control. Based on Lyapunov theory, Smith predictor was analyzed in time domain. The parameters of the fuzzy PID controller can be obtained using traditional linear control theory and sliding mode control theory. The simulation experiments were implemented. The simulation results show that the control performance, robustness and stability of the fuzzy PID controller are better than those of the PID controller in Smith predictor.展开更多
The simplified transfer function diagram block for a monitor automatic gauge control (Mon-AGC) system of strip steel rolling process was investigated. The new notion of strip sample length was given. In this way, th...The simplified transfer function diagram block for a monitor automatic gauge control (Mon-AGC) system of strip steel rolling process was investigated. The new notion of strip sample length was given. In this way, the delay time varying with the rolling speed was evaded. After a Smith predictor was used to monitor the AGC system, the control laws were deduced for both proportional and integral regulators. The control strategies showed that by choosing the controller parameter P=∞ for both control algo- rithms each regulator could compensate the whole strip gage error in the first control step. The result shows that the integral algo- rithm is more controllable for the system regulating process and has a better steady-state precision than the proportional regulator. Compared with the traditional control strategy, the new control laws have a faster response speed and a hieher steadv-state precision.展开更多
Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainti...Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainties of new energies and various types of loads in the IES.Accordingly,a robust optimal dispatching method for the IES based on a robust economic model predictive control(REMPC)strategy considering source-load power interval prediction is proposed.First,an operation model of the IES is established,and an interval prediction model based on the bidirectional long short-term memory network optimized by beetle antenna search and bootstrap is formulated and applied to predict the photovoltaic power and the cooling,heating,and electrical loads.Then,an optimal dispatching scheme based on REMPC is devised for the IES.The source-load interval prediction results are used to improve the robustness of the REPMC and reduce the influence of source-load uncertainties on dispatching.An actual IES case is selected to conduct simulations;the results show that compared with other prediction techniques,the proposed method has higher prediction interval coverage probability and prediction interval normalized averaged width.Moreover,the operational cost of the IES is decreased by the REMPC strategy.With the devised dispatching scheme,the ability of the IES to handle the dispatching risk caused by prediction errors is enhanced.Improved dispatching robustness and operational economy are also achieved.展开更多
Inter-area low frequency oscillation in power system is one of the major problems for bulk power transmission through weak tie lines.Use of wide-area signal is more effective than the local area signal in damping out ...Inter-area low frequency oscillation in power system is one of the major problems for bulk power transmission through weak tie lines.Use of wide-area signal is more effective than the local area signal in damping out the inter-area oscillations.Wide area measurement system(WAMS)is convenient to transmit the wide area signal through the communication channel to the remote location.Communication failure is one of the disastrous phenomena in a communication channel.In this paper,a dual input single output(DISO)Hm controller is designed to build the control resiliency by employing two highest observability ranking wide area signals with respect to the critical damping inter-area mode.The proposed controller can provide sufficient damping to the system and also the system remains stabilized if one of the wide-area signals is lost.The time delay is an unwanted phenomenon that degrades the performance of the controllers.The unified Smith predictor approach is used to design a Hm controller to handle the time delay.Kundur's two-area and IEEE-39 bus test systems are considered to verify the effectiveness of the proposed controller.From the simulation results,it is verified that,the proposed controller provides excellent damping performance at normal communication and improves the controller resiliency to counteract the communication failure.展开更多
基金supported by the National Natural Science Foundation of China(61973105,62373137)。
文摘This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources.
基金Navy Engineering University Natural Science Foundation (NoHGDJJ05013)
文摘A linear quadratic optimal direct track-keeping control law was proposed based on first-order Nomoto nominal model. Furthermore, based on Lyapunov stabilized theory, considering parametric uncertainty from variations of ship speed and disturbances uncertain from wind, wave and sea current, a direct compensative robust optimal control (DCROC) law was developed. It can guarantee closed-loop system globally and uniformly converge to a remained set. High accuracy and robustness were achieved. By introducing some nonlinear blocks, closed-loop system achieves global and uniform asymptotical stableness. Numerical simulations on a Mariner Class ship are presented to validate the control law.
文摘This paper has investigated how the optimization methods can be used to deal with plant uncertainty in linear feedback control design. Firstly, we define a weighted sensitivity error function based on robust redesign. Then, by modifying the nominal controller to minimize the variance of the actual system performanee from the desired performance over the whole frequency range, we obtain an optimal robust design method for a class of stochastic model errors. Moreover, the result can be used to give a good prediction to the achievable average tracking performance and control energy for practical system designs. The validity of obtained results can be illustrated by the simulation research.
文摘The largest robust stability radius r(P0) of a system P0 is defined as the radius of the largest ball Bmax in the gap metric centered at P0 which can be stabilized by one single controller. Any controller which stabilizes Bmax is called an optimally robust controller of P0. Any controller, regarded as a system, should have its own largest robust stability radius also. In this paper it is shown that the largest robust stability radius of any optimally robust controller of P0 is larger than or equal to r(Po). Moreover, the variation of the closed-loop transfer matrix caused by the perturbation of the system is estimated.
基金Supported by National Natural Science Foundation of China(Grant Nos.11072106,51375009)
文摘Because of the tire nonlinearity and vehicle's parameters'uncertainties,robust control methods based on the worst cases,such as H_∞,μsynthesis,have been widely used in active front steering control,however,in order to guarantee the stability of active front steering system(AFS)controller,the robust control is at the cost of performance so that the robust controller is a little conservative and has low performance for AFS control.In this paper,a generalized internal model robust control(GIMC)that can overcome the contradiction between performance and stability is used in the AFS control.In GIMC,the Youla parameterization is used in an improved way.And GIMC controller includes two sections:a high performance controller designed for the nominal vehicle model and a robust controller compensating the vehicle parameters'uncertainties and some external disturbances.Simulations of double lane change(DLC)maneuver and that of braking on split-μroad are conducted to compare the performance and stability of the GIMC control,the nominal performance PID controller and the H_∞controller.Simulation results show that the high nominal performance PID controller will be unstable under some extreme situations because of large vehicle's parameters variations,H_∞controller is conservative so that the performance is a little low,and only the GIMC controller overcomes the contradiction between performance and robustness,which can both ensure the stability of the AFS controller and guarantee the high performance of the AFS controller.Therefore,the GIMC method proposed for AFS can overcome some disadvantages of control methods used by current AFS system,that is,can solve the instability of PID or LQP control methods and the low performance of the standard H_∞controller.
基金Project(61473304)supported by the National Natural Science Foundation of ChinaProject(2015AA042202)supported by Hi-tech Research and Development Program of China
文摘A compliant landing strategy for a trotting quadruped robot on unknown rough terrains based on contact force control is presented. Firstly, in order to lower the disturbance caused by the landing impact force, a landing phase is added between the swing phase and the stance phase, where the desired contact force is set as a small positive constant. Secondly, the joint torque optimization of the stance legs is formulated as a quadratic programming(QP) problem subject to equality and inequality/bound constraints. And a primal-dual dynamical system solver based on linear variational inequalities(LVI) is applied to solve this QP problem. Furthermore, based on the optimization results, a hybrid motion/force robust controller is designed to realize the tracking of the contact force, while the constraints of the stance feet landing angles are fulfilled simultaneously. Finally, the experiments are performed to validate the proposed methods.
文摘A feedforward approach for generating near time optimal controller for flexible spacecraft rest-to-rest maneuvers is presented with the objective insensitivity to modeling errors, parameter uncertainty and minimizing the residual energy of the flexible modes. The perturbation estimation of flexible appendages to the rigid-hub is accomplished simply via compare the output of real plant with the reference model, and the approach is based on combine this estimation with the bang-bang control for the rigid-hub modes through analysis the basic constraint and the additional constraint, i.e. zero coupling torque and zero coupling torque derivative for general two orders system and three orders system with considerate attitude acceleration mode near time optimal controls. These time optimal controls with control constraints and state constraints leads to forming a boundary-value problem, and resolved the problem using an iterative numerical algorithm. The near time optimal control with perturbation estimation shows a good robust to parameter uncertainty and can suppress the vibration and minimizing the residual energy. The capability of this approach is demonstrated through a numerical example in detail.
基金supported by the National Natural Science Foundation of China(61174203)Aeronautical Science Foundation of China(20110177002)
文摘An agile missile with tail fins and pulse thrusters has continuous and discontinuous control inputs.This brings certain difficulty to the autopilot design and stability analysis.Indirect robust control via Theta-D technique is employed to handle this problem.An acceleration tracking system is formulated based on the nonlinear dynamics of agile missile.Considering the dynamics of actuators,there is an error between actual input and computed input.A robust control problem is formed by treating the error as input uncertainty.The robust control is equivalent to a nonlinear quadratic optimal control of the nominal system with a modified performance index including uncertainty bound.Theta-D technique is applied to solve the nonlinear optimal control problem to obtain the final control law.Numerical results show the effectiveness and robustness of the proposed strategy.
基金Project (No. 60374028) supported by the National Natural ScienceFoundation of China
文摘Multi-objective robust state-feedback controller synthesis problems for linear discrete-time uncertain systems are addressed. Based on parameter-dependent Lyapunov functions, the Gl2 and GH2 norm expressed in terms of LMI (Linear Matrix Inequality) characterizations are further generalized to cope with the robust analysis for convex polytopic uncertain system. Robust state-feedback controller synthesis conditions are also derived for this class of uncertain systems. Using the above results, multi-objective state-feedback controller synthesis procedures which involve the LMI optimization technique are developed and less conservative than the existing one. An illustrative example verified the validity of the approach.
基金supported by the Estonian Research Council(PRG658)。
文摘The robust stability study of the classic Smith predictor-based control system for uncertain fractional-order plants with interval time delays and interval coefficients is the emphasis of this work.Interval uncertainties are a type of parametric uncertainties that cannot be avoided when modeling real-world plants.Also,in the considered Smith predictor control structure it is supposed that the controller is a fractional-order proportional integral derivative(FOPID)controller.To the best of the authors'knowledge,no method has been developed until now to analyze the robust stability of a Smith predictor based fractional-order control system in the presence of the simultaneous uncertainties in gain,time-constants,and time delay.The three primary contributions of this study are as follows:ⅰ)a set of necessary and sufficient conditions is constructed using a graphical method to examine the robust stability of a Smith predictor-based fractionalorder control system—the proposed method explicitly determines whether or not the FOPID controller can robustly stabilize the Smith predictor-based fractional-order control system;ⅱ)an auxiliary function as a robust stability testing function is presented to reduce the computational complexity of the robust stability analysis;andⅲ)two auxiliary functions are proposed to achieve the control requirements on the disturbance rejection and the noise reduction.Finally,four numerical examples and an experimental verification are presented in this study to demonstrate the efficacy and significance of the suggested technique.
基金supported by the Doctoral Foundation of Qingdao University of Science and Technology(0022330).
文摘The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear system into a linear one and an optimal LQR is designed for the corresponding nominal system. Then, based on the integral sliding mode, a design approach to robustifying the optimal regulator is studied. As a result, the system exhibits global robustness to uncertainties and the ideal sliding mode dynamics is the same as that of the optimal LQR for the nominal system. A global robust optimal sliding mode control (GROSMC) is realized. Finally, a numerical simulation is demonstrated to show the effectiveness and superiority of the proposed algorithm compared with the conventional optimal LQR.
基金supported by the National Key Research and Development Project (Grant No. 2018YFC1900800-5)the National Natural Science Foundation of China (Grant Nos. 61890930-5 and 61622301)+1 种基金Beijing Natural Science Foundation (Grant No. 4172005)Beijing Outstanding Young Scientist Program (Grant No. BJJWZYJH01 201910005020)。
文摘Anaerobic-anoxic-oxic(A_2O) reactors, as the core parts of wastewater treatment process(WWTP), have attracted considerable attention to achieve the reliability of denitrification and dephosphorization. However, it is difficult to realize the optimal operation of A_2O reactors due to the existence of nonlinear dynamics and large uncertainties. To solve this problem, a robust optimal control(ROC) strategy is developed to improve the operation performance of A_2O reactors. First, data-driven systematic evaluation criteria are developed to describe the operational indicators of changeable conditions. Second, a robust optimization algorithm is designed to select the optimal solution. Third, a fuzzy neural network(FNN) is used to track the optimal solution in the control process. Finally, this proposed ROC strategy is applied to the phosphorus removal benchmark simulation model(BSM1-P) and the real A_2O reactors. The results demonstrate that the strategy developed in this paper has great potential for application in real A_2O reactors.
基金supported by the National High-Technology Research and Development Program of China (863 Program,Grant No. 2008AA042703)
文摘A robust optimal output tracking control method for a midwater trawl system is investigated based on T-S fuzzy nonlinear model. A simplified nonlinear mathematical model is first employed to represent a midwater trawl system, and then a T-S fuzzy model is adopted to approximate the nonlinear system. Since the strong nonlinearities and the external disturbance of the trawling system, a mixed H2/H∞ fuzzy output tracking control strategy via T-S fuzzy system is proposed to regulate the trawl depth to follow a desired trajectory. The trawl depth can be regulated by adjusting the winch velocity automatically and the tracking error can be minimized according to the robust optimal criterion. In order to validate the proposed control method, a computer simulation is conducted. The simulation results indicate that the proposed fuzzy robust optimal controller make the trawl net rapidly follow the desired trajectory under the model uncertainties and the extemal disturbance caused by wave and current.
基金Project supported by the National Natural Science Foundation of China(Nos.62273245 and 62173033)the Sichuan Science and Technology Program of China(No.2024NSFSC1486)the Opening Project of Robotic Satellite Key Laboratory of Sichuan Province of China。
文摘A distributionally robust model predictive control(DRMPC)scheme is proposed based on neural network(NN)modeling to achieve the trajectory tracking control of robot manipulators with state and control torque constraints.First,an NN is used to fit the motion data of robot manipulators for data-driven dynamic modeling,converting it into a linear prediction model through gradients.Then,by statistically analyzing the stochastic characteristics of the NN modeling errors,a distributionally robust model predictive controller is designed based on the chance constraints,and the optimization problem is transformed into a tractable quadratic programming(QP)problem under the distributionally robust optimization(DRO)framework.The recursive feasibility and convergence of the proposed algorithm are proven.Finally,the effectiveness of the proposed algorithm is verified through numerical simulation.
基金supported by the National Natural Science Foundation of China(62373187)Forward-looking Layout Special Projects(ILA220591A22).
文摘To meet the requirements of modern air combat,an integrated fire/flight control(IFFC)system is designed to achieve automatic precision tracking and aiming for armed helicopters and release the pilot from heavy target burden.Considering the complex dynamic characteristics and the couplings of armed helicopters,an improved automatic attack system is con-structed to integrate the fire control system with the flight con-trol system into a unit.To obtain the optimal command signals,the algorithm is investigated to solve nonconvex optimization problems by the contracting Broyden Fletcher Goldfarb Shanno(C-BFGS)algorithm combined with the trust region method.To address the uncertainties in the automatic attack system,the memory nominal distribution and Wasserstein distance are introduced to accurately characterize the uncertainties,and the dual solvable problem is analyzed by using the duality the-ory,conjugate function,and dual norm.Simulation results verify the practicality and validity of the proposed method in solving the IFFC problem on the premise of satisfactory aiming accu-racy.
基金supported by National Natural Science Foundation of China (Grant No. 604740044)Hebei Provincial Natural Science Foundation of China (Grant No. E2004000221)
文摘Flatness is one of the most important criterion factors to evaluate the quality of the steel strip. To improve the strip' s flatness quality, the most frequently used methodology is to employ the closed-loop automatic shape control system. However, in the shape control system, the shape-meter is always installed at the down way of the exit of the cold rolling mill and can not sense the changes of the strip flatness in the rolling gap directly. This kind of installation results in the delay of the feedback in the control system. Therefore, the stability and response performance of the system are strongly affected by the delay. At present, there is still no mature way to design controllers for systems with time delay. Although the conventional PID controller used in most practical applications has the capability to compensate the delay, the effect of the compensation is limited, especially for the systems with long time delay. Smith predictor, as a compensator for solving this problem, is now widely used in industry systems. However, the request of highly precise model of the system and the poor adaptive performance to the changes of related parameters limit the application of the Smith predictor in practice. In order to overcome the drawbacks of the Smith predictor, a new Smith predictor based on single neural network PID (SNN-PID) is proposed. Because the single neural network is employed into the Smith predictor to improve the controller's self-adaptability, the adaptive capability to the varying parameters of the system is improved. Meanwhile, for the purpose of solving the problems such as time-consuming and complicated calculation of the neural networks in real time, the learning coefficient of neural network is divided into several stages as usually done in expert control system. Therefore, the control system can obtain fast response due to the improved calculation speed of the neural networks. In order to validate the performance of the proposed controller, the experiment is conducted on the shape control system in a 300 mm four-high reversing cold rolling mill. The experimental results show that the SNN-PID with Smith predictor controller can effectively compensate the delay effects and achieve better control performance than the conventional PID controller.
基金Project(70473068) supported by the National Natural Science Foundation of ChinaProject(05JZD00024) supported by the Major Subject of Ministry of Education, China
文摘An analytical tuning method was proposed for fuzzy PID controller used in Smith predictor in order to extend its application and improve its robustness. The fuzzy PID controller was expressed as a sliding mode control. Based on Lyapunov theory, Smith predictor was analyzed in time domain. The parameters of the fuzzy PID controller can be obtained using traditional linear control theory and sliding mode control theory. The simulation experiments were implemented. The simulation results show that the control performance, robustness and stability of the fuzzy PID controller are better than those of the PID controller in Smith predictor.
基金supported by the National High-Tech Research and Development Program of China (No.2003AA33G010)
文摘The simplified transfer function diagram block for a monitor automatic gauge control (Mon-AGC) system of strip steel rolling process was investigated. The new notion of strip sample length was given. In this way, the delay time varying with the rolling speed was evaded. After a Smith predictor was used to monitor the AGC system, the control laws were deduced for both proportional and integral regulators. The control strategies showed that by choosing the controller parameter P=∞ for both control algo- rithms each regulator could compensate the whole strip gage error in the first control step. The result shows that the integral algo- rithm is more controllable for the system regulating process and has a better steady-state precision than the proportional regulator. Compared with the traditional control strategy, the new control laws have a faster response speed and a hieher steadv-state precision.
基金supported by the National Key Research and Development Project of China(2018YFE0122200).
文摘Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainties of new energies and various types of loads in the IES.Accordingly,a robust optimal dispatching method for the IES based on a robust economic model predictive control(REMPC)strategy considering source-load power interval prediction is proposed.First,an operation model of the IES is established,and an interval prediction model based on the bidirectional long short-term memory network optimized by beetle antenna search and bootstrap is formulated and applied to predict the photovoltaic power and the cooling,heating,and electrical loads.Then,an optimal dispatching scheme based on REMPC is devised for the IES.The source-load interval prediction results are used to improve the robustness of the REPMC and reduce the influence of source-load uncertainties on dispatching.An actual IES case is selected to conduct simulations;the results show that compared with other prediction techniques,the proposed method has higher prediction interval coverage probability and prediction interval normalized averaged width.Moreover,the operational cost of the IES is decreased by the REMPC strategy.With the devised dispatching scheme,the ability of the IES to handle the dispatching risk caused by prediction errors is enhanced.Improved dispatching robustness and operational economy are also achieved.
基金support by the Central Power Research Institute,India(CPRI/RD/RSOP/GRANT/2015)
文摘Inter-area low frequency oscillation in power system is one of the major problems for bulk power transmission through weak tie lines.Use of wide-area signal is more effective than the local area signal in damping out the inter-area oscillations.Wide area measurement system(WAMS)is convenient to transmit the wide area signal through the communication channel to the remote location.Communication failure is one of the disastrous phenomena in a communication channel.In this paper,a dual input single output(DISO)Hm controller is designed to build the control resiliency by employing two highest observability ranking wide area signals with respect to the critical damping inter-area mode.The proposed controller can provide sufficient damping to the system and also the system remains stabilized if one of the wide-area signals is lost.The time delay is an unwanted phenomenon that degrades the performance of the controllers.The unified Smith predictor approach is used to design a Hm controller to handle the time delay.Kundur's two-area and IEEE-39 bus test systems are considered to verify the effectiveness of the proposed controller.From the simulation results,it is verified that,the proposed controller provides excellent damping performance at normal communication and improves the controller resiliency to counteract the communication failure.