This paper considers the fully coupled forward-backward stochastic functional differential equations(FBSFDEs) with stochastic functional differential equations as the forward equations and the generalized anticipated ...This paper considers the fully coupled forward-backward stochastic functional differential equations(FBSFDEs) with stochastic functional differential equations as the forward equations and the generalized anticipated backward stochastic differential equations as the backward equations. The authors will prove the existence and uniqueness theorem for FBSFDEs. As an application, we deal with a quadratic optimal control problem for functional stochastic systems, and get the explicit form of the optimal control by virtue of FBSFDEs.展开更多
In this paper,we investigate a stochastic meshfree finite volume element method for an optimal control problem governed by the convection diffusion equations with random coefficients.There are two contributions of thi...In this paper,we investigate a stochastic meshfree finite volume element method for an optimal control problem governed by the convection diffusion equations with random coefficients.There are two contributions of this paper.Firstly,we establish a scheme to approximate the optimality system by using the finite volume element method in the physical space and the meshfree method in the probability space,which is competitive for high-dimensional random inputs.Secondly,the a priori error estimates are derived for the state,the co-state and the control variables.Some numerical tests are carried out to confirm the theoretical results and demonstrate the efficiency of the proposed method.展开更多
This paper is concerned with optimal control of neutral stochastic functional differential equations(NSFDEs). The Pontryagin maximum principle is proved for optimal control, where the adjoint equation is a linear neut...This paper is concerned with optimal control of neutral stochastic functional differential equations(NSFDEs). The Pontryagin maximum principle is proved for optimal control, where the adjoint equation is a linear neutral backward stochastic functional equation of Volterra type(VNBSFE). The existence and uniqueness of the solution are proved for the general nonlinear VNBSFEs. Under the convexity assumption of the Hamiltonian function, a sufficient condition for the optimality is addressed as well.展开更多
Respiratory variables, including tidal volume and respiratory rate, display significant variability. The probability density function (PDF) of respiratory variables has been shown to contain clinical information and c...Respiratory variables, including tidal volume and respiratory rate, display significant variability. The probability density function (PDF) of respiratory variables has been shown to contain clinical information and can predict the risk for exacerbation in asthma. However, it is uncertain why this PDF plays a major role in predicting the dynamic conditions of the respiratory system. This paper introduces a stochastic optimal control model for noisy spontaneous breathing, and obtains a Shrödinger’s wave equation as the motion equation that can produce a PDF as a solution. Based on the lobules-bronchial tree model of the lung system, the tidal volume variable was expressed by a polar coordinate, by use of which the Shrödinger’s wave equation of inter-breath intervals (IBIs) was obtained. Through the wave equation of IBIs, the respiratory rhythm generator was characterized by the potential function including the PDF and the parameter concerning the topographical distribution of regional pulmonary ventilations. The stochastic model in this study was assumed to have a common variance parameter in the state variables, which would originate from the variability in metabolic energy at the cell level. As a conclusion, the PDF of IBIs would become a marker of neuroplasticity in the respiratory rhythm generator through Shr?dinger’s wave equation for IBIs.展开更多
In this paper, we study variational discretization for the constrained optimal control problem governed by convection dominated diffusion equations, where the state equation is approximated by the edge stabilization G...In this paper, we study variational discretization for the constrained optimal control problem governed by convection dominated diffusion equations, where the state equation is approximated by the edge stabilization Galerkin method. A priori error estimates are derived for the state, the adjoint state and the control. Moreover, residual type a posteriori error estimates in the L^2-norm are obtained. Finally, two numerical experiments are presented to illustrate the theoretical results.展开更多
This paper considers the variational discretization for the constrained optimal control problem governed by linear parabolic equations.The state and co-state are approximated by RaviartThomas mixed finite element spac...This paper considers the variational discretization for the constrained optimal control problem governed by linear parabolic equations.The state and co-state are approximated by RaviartThomas mixed finite element spaces,and the authors do not discretize the space of admissible control but implicitly utilize the relation between co-state and control for the discretization of the control.A priori error estimates are derived for the state,the co-state,and the control.Some numerical examples are presented to confirm the theoretical investigations.展开更多
In this paper, an optimal control problem governed by semilinear parabolic equation which involves the control variable acting on forcing term and coefficients appearing in the higher order derivative terms is formula...In this paper, an optimal control problem governed by semilinear parabolic equation which involves the control variable acting on forcing term and coefficients appearing in the higher order derivative terms is formulated and analyzed. The strong variation method, due originally to Mayne et al to solve the optimal control problem of a lumped parameter system, is extended to solve an optimal control problem governed by semilinear parabolic equation, a necessary condition is obtained, the strong variation algorithm for this optimal control problem is presented, and the corresponding convergence result of the algorithm is verified.展开更多
The main aim of this study is to prove that a class of fractional Burgers’equations has a unique solution under some special conditions.Then it is demonstrated that an optimal control problem for this class of fracti...The main aim of this study is to prove that a class of fractional Burgers’equations has a unique solution under some special conditions.Then it is demonstrated that an optimal control problem for this class of fractional Burgers’equations has at least one optimal solution.展开更多
Farming awareness is an important measure for pest controlling in agricultural practice.Time delay in controlling pest may affect the system.Time delay occurs in organizing awareness campaigns,also time delay may take...Farming awareness is an important measure for pest controlling in agricultural practice.Time delay in controlling pest may affect the system.Time delay occurs in organizing awareness campaigns,also time delay may takes place in becoming aware of the control strategies or implementing suitable controlling methods informed through social media.Thus we have derived a mathematical model incorporating two time delays into the system and Holling type-II functional response.The existence and the stability criteria of the equilibria are obtained in terms of the basic reproduction number and time delays.Stability changes occur through Hopf-bifurcation when time delays cross the critical values.Optimal control theory has been applied for cost-effectiveness of the delayed system.Numerical simulations are carried out to justify the analytical results.This study shows that optimal farming awareness through radio,TV etc.can control the delay induced bifurcation in a cost-effective way.展开更多
In this paper,optimize-then-discretize,variational discretization and the finite volume method are applied to solve the distributed optimal control problems governed by a second order hyperbolic equation.A semi-discre...In this paper,optimize-then-discretize,variational discretization and the finite volume method are applied to solve the distributed optimal control problems governed by a second order hyperbolic equation.A semi-discrete optimal system is obtained.We prove the existence and uniqueness of the solution to the semidiscrete optimal system and obtain the optimal order error estimates in L ∞(J;L 2)-and L ∞(J;H 1)-norm.Numerical experiments are presented to test these theoretical results.展开更多
We study mean-field type optimal stochastic control problem for systems governed by mean-field controlled forward-backward stochastic differential equations with jump processes,in which the coefficients depend on the ...We study mean-field type optimal stochastic control problem for systems governed by mean-field controlled forward-backward stochastic differential equations with jump processes,in which the coefficients depend on the marginal law of the state process through its expected value.The control variable is allowed to enter both diffusion and jump coefficients.Moreover,the cost functional is also of mean-field type.Necessary conditions for optimal control for these systems in the form of maximum principle are established by means of convex perturbation techniques.As an application,time-inconsistent mean-variance portfolio selectionmixed with a recursive utility functional optimization problem is discussed to illustrate the theoretical results.展开更多
In this paper,we establish a second-order necessary conditions for stochastic optimal control for jump diffusions.The controlled system is described by a stochastic differential systems driven by Poisson random measur...In this paper,we establish a second-order necessary conditions for stochastic optimal control for jump diffusions.The controlled system is described by a stochastic differential systems driven by Poisson random measure and an independent Brownian motion.The control domain is assumed to be convex.Pointwise second-order maximum principle for controlled jump diffusion in terms of the martingale with respect to the time variable is proved.The proof of the main result is based on variational approach using the stochastic calculus of jump diffusions and some estimates on the state processes.展开更多
A time-inconsistent linear-quadratic optimal control problem for stochastic differential equations is studied.We introduce conditions where the control cost weighting matrix is possibly singular.Under such conditions,...A time-inconsistent linear-quadratic optimal control problem for stochastic differential equations is studied.We introduce conditions where the control cost weighting matrix is possibly singular.Under such conditions,we obtain a family of closed-loop equilibrium strategies via multi-person differential games.This result extends Yong’s work(2017) in the case of stochastic differential equations,where a unique closed-loop equilibrium strategy can be derived under standard conditions(namely,the control cost weighting matrix is uniformly positive definite,and the other weighting coefficients are positive semidefinite).展开更多
基金the Program of Natural Science Research of Jiangsu Higher Education Institutions of China under Grant No. 17KJB110009。
文摘This paper considers the fully coupled forward-backward stochastic functional differential equations(FBSFDEs) with stochastic functional differential equations as the forward equations and the generalized anticipated backward stochastic differential equations as the backward equations. The authors will prove the existence and uniqueness theorem for FBSFDEs. As an application, we deal with a quadratic optimal control problem for functional stochastic systems, and get the explicit form of the optimal control by virtue of FBSFDEs.
基金supported by the National Natural Science Foundation of China(Nos.11701253,11971259,11801216)Natural Science Foundation of Shandong Province(No.ZR2017BA010)。
文摘In this paper,we investigate a stochastic meshfree finite volume element method for an optimal control problem governed by the convection diffusion equations with random coefficients.There are two contributions of this paper.Firstly,we establish a scheme to approximate the optimality system by using the finite volume element method in the physical space and the meshfree method in the probability space,which is competitive for high-dimensional random inputs.Secondly,the a priori error estimates are derived for the state,the co-state and the control variables.Some numerical tests are carried out to confirm the theoretical results and demonstrate the efficiency of the proposed method.
文摘This paper is concerned with optimal control of neutral stochastic functional differential equations(NSFDEs). The Pontryagin maximum principle is proved for optimal control, where the adjoint equation is a linear neutral backward stochastic functional equation of Volterra type(VNBSFE). The existence and uniqueness of the solution are proved for the general nonlinear VNBSFEs. Under the convexity assumption of the Hamiltonian function, a sufficient condition for the optimality is addressed as well.
文摘Respiratory variables, including tidal volume and respiratory rate, display significant variability. The probability density function (PDF) of respiratory variables has been shown to contain clinical information and can predict the risk for exacerbation in asthma. However, it is uncertain why this PDF plays a major role in predicting the dynamic conditions of the respiratory system. This paper introduces a stochastic optimal control model for noisy spontaneous breathing, and obtains a Shrödinger’s wave equation as the motion equation that can produce a PDF as a solution. Based on the lobules-bronchial tree model of the lung system, the tidal volume variable was expressed by a polar coordinate, by use of which the Shrödinger’s wave equation of inter-breath intervals (IBIs) was obtained. Through the wave equation of IBIs, the respiratory rhythm generator was characterized by the potential function including the PDF and the parameter concerning the topographical distribution of regional pulmonary ventilations. The stochastic model in this study was assumed to have a common variance parameter in the state variables, which would originate from the variability in metabolic energy at the cell level. As a conclusion, the PDF of IBIs would become a marker of neuroplasticity in the respiratory rhythm generator through Shr?dinger’s wave equation for IBIs.
基金support of the Chinese and German Research Foundations through the Sino-German Workshop on Applied Mathematics held in Hangzhou in October 2007support of the German Research Foundation through the grants DFG06-381 and DFG06-382+1 种基金support of the National Basic Research Program under the Grant 2005CB321701the National Natural Science Foundation of China under the Grant 60474027 and 10771211
文摘In this paper, we study variational discretization for the constrained optimal control problem governed by convection dominated diffusion equations, where the state equation is approximated by the edge stabilization Galerkin method. A priori error estimates are derived for the state, the adjoint state and the control. Moreover, residual type a posteriori error estimates in the L^2-norm are obtained. Finally, two numerical experiments are presented to illustrate the theoretical results.
基金supported by the National Natural Science Foundation of Chinaunder Grant No.11271145Foundation for Talent Introduction of Guangdong Provincial University+3 种基金Fund for the Doctoral Program of Higher Education under Grant No.20114407110009the Project of Department of Education of Guangdong Province under Grant No.2012KJCX0036supported by Hunan Education Department Key Project 10A117the National Natural Science Foundation of China under Grant Nos.11126304 and 11201397
文摘This paper considers the variational discretization for the constrained optimal control problem governed by linear parabolic equations.The state and co-state are approximated by RaviartThomas mixed finite element spaces,and the authors do not discretize the space of admissible control but implicitly utilize the relation between co-state and control for the discretization of the control.A priori error estimates are derived for the state,the co-state,and the control.Some numerical examples are presented to confirm the theoretical investigations.
基金the Educational Department Foundation of Tianjin of Science and Technology (No.20042120).
文摘In this paper, an optimal control problem governed by semilinear parabolic equation which involves the control variable acting on forcing term and coefficients appearing in the higher order derivative terms is formulated and analyzed. The strong variation method, due originally to Mayne et al to solve the optimal control problem of a lumped parameter system, is extended to solve an optimal control problem governed by semilinear parabolic equation, a necessary condition is obtained, the strong variation algorithm for this optimal control problem is presented, and the corresponding convergence result of the algorithm is verified.
文摘The main aim of this study is to prove that a class of fractional Burgers’equations has a unique solution under some special conditions.Then it is demonstrated that an optimal control problem for this class of fractional Burgers’equations has at least one optimal solution.
文摘Farming awareness is an important measure for pest controlling in agricultural practice.Time delay in controlling pest may affect the system.Time delay occurs in organizing awareness campaigns,also time delay may takes place in becoming aware of the control strategies or implementing suitable controlling methods informed through social media.Thus we have derived a mathematical model incorporating two time delays into the system and Holling type-II functional response.The existence and the stability criteria of the equilibria are obtained in terms of the basic reproduction number and time delays.Stability changes occur through Hopf-bifurcation when time delays cross the critical values.Optimal control theory has been applied for cost-effectiveness of the delayed system.Numerical simulations are carried out to justify the analytical results.This study shows that optimal farming awareness through radio,TV etc.can control the delay induced bifurcation in a cost-effective way.
基金supported by National Natural Science Foundation of China(Grant Nos.11261011,11271145 and 11031006)Foundation of Guizhou Science and Technology Department(Grant No.[2011]2098)+2 种基金Foundation for Talent Introduction of Guangdong Provincial UniversitySpecialized Research Fund for the Doctoral Program of Higher Education(Grant No. 20114407110009)the Project of Department of Education of Guangdong Province(Grant No. 2012KJCX0036)
文摘In this paper,optimize-then-discretize,variational discretization and the finite volume method are applied to solve the distributed optimal control problems governed by a second order hyperbolic equation.A semi-discrete optimal system is obtained.We prove the existence and uniqueness of the solution to the semidiscrete optimal system and obtain the optimal order error estimates in L ∞(J;L 2)-and L ∞(J;H 1)-norm.Numerical experiments are presented to test these theoretical results.
基金The first author was partially supported by Algerian CNEPRU Project Grant B01420130137,2014-2016.
文摘We study mean-field type optimal stochastic control problem for systems governed by mean-field controlled forward-backward stochastic differential equations with jump processes,in which the coefficients depend on the marginal law of the state process through its expected value.The control variable is allowed to enter both diffusion and jump coefficients.Moreover,the cost functional is also of mean-field type.Necessary conditions for optimal control for these systems in the form of maximum principle are established by means of convex perturbation techniques.As an application,time-inconsistent mean-variance portfolio selectionmixed with a recursive utility functional optimization problem is discussed to illustrate the theoretical results.
文摘In this paper,we establish a second-order necessary conditions for stochastic optimal control for jump diffusions.The controlled system is described by a stochastic differential systems driven by Poisson random measure and an independent Brownian motion.The control domain is assumed to be convex.Pointwise second-order maximum principle for controlled jump diffusion in terms of the martingale with respect to the time variable is proved.The proof of the main result is based on variational approach using the stochastic calculus of jump diffusions and some estimates on the state processes.
基金supported by National Natural Science Foundation of China (Grant Nos.12025105, 11971334 and 11931011)the Chang Jiang Scholars Program and the Science Development Project of Sichuan University (Grant Nos. 2020SCUNL101 and 2020SCUNL201)。
文摘A time-inconsistent linear-quadratic optimal control problem for stochastic differential equations is studied.We introduce conditions where the control cost weighting matrix is possibly singular.Under such conditions,we obtain a family of closed-loop equilibrium strategies via multi-person differential games.This result extends Yong’s work(2017) in the case of stochastic differential equations,where a unique closed-loop equilibrium strategy can be derived under standard conditions(namely,the control cost weighting matrix is uniformly positive definite,and the other weighting coefficients are positive semidefinite).