The interest in distributed generation has been increasing in recent years, especially due to technical devel- opment on generation systems that meet environmental and energy policy concerns. One of the most impor- ta...The interest in distributed generation has been increasing in recent years, especially due to technical devel- opment on generation systems that meet environmental and energy policy concerns. One of the most impor- tant distributed energy technologies is Combined Cooling, Heat and Power (CCHP) systems. CCHP is a small and self-contained electric, heating and cooling generation plant that can provide power for households, commercial or industrial facilities. It can reduce power loss and enhance service reliability in distribution systems. The proposed method in this paper determines the optimal size and operation of CCHP, auxiliary boiler and also heat storage unit as elements of an energy hub, for users by an integrated view of electricity and natural gas network. Authors apply cost and benefit analysis in the optimization. To confirm the proposed method, the optimum sizes of these elements are determined for a hotel in Tehran as a case study.展开更多
This paper presents an efficient and reliable genetic algorithm (GA) based particle swarm optimization (PSO) tech- nique (hybrid GAPSO) for solving the economic dispatch (ED) problem in power systems. The non-linear c...This paper presents an efficient and reliable genetic algorithm (GA) based particle swarm optimization (PSO) tech- nique (hybrid GAPSO) for solving the economic dispatch (ED) problem in power systems. The non-linear characteristics of the generators, such as prohibited operating zones, ramp rate limits and non-smooth cost functions of the practical generator operation are considered. The proposed hybrid algorithm is demonstrated for three different systems and the performance is compared with the GA and PSO in terms of solution quality and computation efficiency. Comparison of results proved that the proposed algo- rithm can obtain higher quality solutions efficiently in ED problems. A comprehensive software package is developed using MATLAB.展开更多
Economic dispatch has a significant effect on optimal economical operation in the power systems in industrial revolution 4.0 in terms of considerable savings in revenue.Various non-linearity are added to make the foss...Economic dispatch has a significant effect on optimal economical operation in the power systems in industrial revolution 4.0 in terms of considerable savings in revenue.Various non-linearity are added to make the fossil fuel-based power systems more practical.In order to achieve an accurate economical schedule,valve point loading effect,ramp rate constraints,and prohibited operating zones are being considered for realistic scenarios.In this paper,an improved,and modified version of conventional particle swarm optimization(PSO),called Oscillatory PSO(OPSO),is devised to provide a cheaper schedule with optimum cost.The conventional PSO is improved by deriving a mechanism enabling the particle towards the trajectories of oscillatory motion to acquire the entire search space.A set of differential equations is implemented to expose the condition for trajectory motion in oscillation.Using adaptive inertia weights,this OPSO method provides an optimized cost of generation as compared to the conventional particle swarm optimization and other new meta-heuristic approaches.展开更多
Electricity network is a very complex entity that comprises several components like generators, transmission lines, loads among others. As technologies continue to evolve, the complexity of the electricity network has...Electricity network is a very complex entity that comprises several components like generators, transmission lines, loads among others. As technologies continue to evolve, the complexity of the electricity network has also increased as more devices are being connected to the network. To understand the physical laws governing the operation of the network, techniques such as optimal power flow (OPF), Economic dispatch (ED) and Security constrained optimal power flow (SCOPF) were developed. These techniques have been used extensively in network operation, planning and so on. However, an in-depth presentation showcasing the merits and demerits of these techniques is still lacking in the literature. Hence, this paper intends to fill this gap. In this paper, Economic dispatch, optimal power flow and security-constrained optimal power flow are applied to a 3-bus test system using a linear programming approach. The results of the ED, OPF and SC-OPF are compared and presented.展开更多
“双碳”背景下,异质能源的耦合加剧迫使综合能源系统(integrated energy system, IES)拓扑朝着更复杂、更灵活的方向不断演变。然而,现有优化调度方法对非欧网络拓扑知识及其异质潮流约束考虑不足。针对这一问题,提出一种基于图强化学...“双碳”背景下,异质能源的耦合加剧迫使综合能源系统(integrated energy system, IES)拓扑朝着更复杂、更灵活的方向不断演变。然而,现有优化调度方法对非欧网络拓扑知识及其异质潮流约束考虑不足。针对这一问题,提出一种基于图强化学习的综合能源系统优化调度方法。首先,基于图理论在保证节点多样状态的情况下,将异质能源网络拓扑转换为网络图模型。其次,通过建立基于真实图映射的状态-动作-奖励的框架,利用图强化学习的方法学习图模型的非欧拓扑信息,将异质潮流知识加入系统节点运行状态,从而实现IES的安全优化调度。最后,利用某工业园区的真实数据进行仿真验证,所提方法相对于传统方法有效缓解了节点电压越限的问题。结果表明,所提方法能够在考虑IES真实拓扑运行状态信息和异质潮流安全的情况下实现IES的优化调度。展开更多
文摘The interest in distributed generation has been increasing in recent years, especially due to technical devel- opment on generation systems that meet environmental and energy policy concerns. One of the most impor- tant distributed energy technologies is Combined Cooling, Heat and Power (CCHP) systems. CCHP is a small and self-contained electric, heating and cooling generation plant that can provide power for households, commercial or industrial facilities. It can reduce power loss and enhance service reliability in distribution systems. The proposed method in this paper determines the optimal size and operation of CCHP, auxiliary boiler and also heat storage unit as elements of an energy hub, for users by an integrated view of electricity and natural gas network. Authors apply cost and benefit analysis in the optimization. To confirm the proposed method, the optimum sizes of these elements are determined for a hotel in Tehran as a case study.
文摘This paper presents an efficient and reliable genetic algorithm (GA) based particle swarm optimization (PSO) tech- nique (hybrid GAPSO) for solving the economic dispatch (ED) problem in power systems. The non-linear characteristics of the generators, such as prohibited operating zones, ramp rate limits and non-smooth cost functions of the practical generator operation are considered. The proposed hybrid algorithm is demonstrated for three different systems and the performance is compared with the GA and PSO in terms of solution quality and computation efficiency. Comparison of results proved that the proposed algo- rithm can obtain higher quality solutions efficiently in ED problems. A comprehensive software package is developed using MATLAB.
基金The authors are grateful to the Raytheon Chair for Systems Engineering for funding.
文摘Economic dispatch has a significant effect on optimal economical operation in the power systems in industrial revolution 4.0 in terms of considerable savings in revenue.Various non-linearity are added to make the fossil fuel-based power systems more practical.In order to achieve an accurate economical schedule,valve point loading effect,ramp rate constraints,and prohibited operating zones are being considered for realistic scenarios.In this paper,an improved,and modified version of conventional particle swarm optimization(PSO),called Oscillatory PSO(OPSO),is devised to provide a cheaper schedule with optimum cost.The conventional PSO is improved by deriving a mechanism enabling the particle towards the trajectories of oscillatory motion to acquire the entire search space.A set of differential equations is implemented to expose the condition for trajectory motion in oscillation.Using adaptive inertia weights,this OPSO method provides an optimized cost of generation as compared to the conventional particle swarm optimization and other new meta-heuristic approaches.
文摘Electricity network is a very complex entity that comprises several components like generators, transmission lines, loads among others. As technologies continue to evolve, the complexity of the electricity network has also increased as more devices are being connected to the network. To understand the physical laws governing the operation of the network, techniques such as optimal power flow (OPF), Economic dispatch (ED) and Security constrained optimal power flow (SCOPF) were developed. These techniques have been used extensively in network operation, planning and so on. However, an in-depth presentation showcasing the merits and demerits of these techniques is still lacking in the literature. Hence, this paper intends to fill this gap. In this paper, Economic dispatch, optimal power flow and security-constrained optimal power flow are applied to a 3-bus test system using a linear programming approach. The results of the ED, OPF and SC-OPF are compared and presented.
文摘“双碳”背景下,异质能源的耦合加剧迫使综合能源系统(integrated energy system, IES)拓扑朝着更复杂、更灵活的方向不断演变。然而,现有优化调度方法对非欧网络拓扑知识及其异质潮流约束考虑不足。针对这一问题,提出一种基于图强化学习的综合能源系统优化调度方法。首先,基于图理论在保证节点多样状态的情况下,将异质能源网络拓扑转换为网络图模型。其次,通过建立基于真实图映射的状态-动作-奖励的框架,利用图强化学习的方法学习图模型的非欧拓扑信息,将异质潮流知识加入系统节点运行状态,从而实现IES的安全优化调度。最后,利用某工业园区的真实数据进行仿真验证,所提方法相对于传统方法有效缓解了节点电压越限的问题。结果表明,所提方法能够在考虑IES真实拓扑运行状态信息和异质潮流安全的情况下实现IES的优化调度。