期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于EWT-OPRCMDE-ELM的风电机组齿轮箱故障诊断研究
被引量:
5
1
作者
李辉
李宣
+2 位作者
贾嵘
罗兴琦
白亮
《自动化仪表》
CAS
2021年第11期12-19,共8页
针对复杂运行工况和强背景噪声下风电机组齿轮箱故障特征提取和故障模式识别困难的问题。提出一种经验小波变换(EWT)、最优参数精细复合多尺度散布熵(OPRCMDE)和极限学习机(ELM)相结合的故障诊断方法。首先,利用经验小波变换将原始振动...
针对复杂运行工况和强背景噪声下风电机组齿轮箱故障特征提取和故障模式识别困难的问题。提出一种经验小波变换(EWT)、最优参数精细复合多尺度散布熵(OPRCMDE)和极限学习机(ELM)相结合的故障诊断方法。首先,利用经验小波变换将原始振动信号分解为若干子模态分量(EWF),通过相关系数选取EWF进行信号重构。其次,提取重构信号的最优参数精细复合多尺度散布熵构成故障特征向量,并通过Relief-F算法对特征向量作进一步筛选,剔除冗余。最后,利用极限学习机进行故障诊断。试验分析结果表明,所提方法能够有效提取区分度明显的风电机组齿轮箱故障特征,实现了齿轮箱故障的准确识别。该研究为风电机组齿轮箱故障诊断研究提供了参考,同时具有一定的实际工程应用价值。
展开更多
关键词
风电机组齿轮箱
经验小波变换
信号重构
特征提取
最优参数精细复合多尺度散布熵
Relief-F
极限学习机
故障诊断
下载PDF
职称材料
题名
基于EWT-OPRCMDE-ELM的风电机组齿轮箱故障诊断研究
被引量:
5
1
作者
李辉
李宣
贾嵘
罗兴琦
白亮
机构
西安理工大学电气工程学院
西安理工大学水利水电学院
出处
《自动化仪表》
CAS
2021年第11期12-19,共8页
文摘
针对复杂运行工况和强背景噪声下风电机组齿轮箱故障特征提取和故障模式识别困难的问题。提出一种经验小波变换(EWT)、最优参数精细复合多尺度散布熵(OPRCMDE)和极限学习机(ELM)相结合的故障诊断方法。首先,利用经验小波变换将原始振动信号分解为若干子模态分量(EWF),通过相关系数选取EWF进行信号重构。其次,提取重构信号的最优参数精细复合多尺度散布熵构成故障特征向量,并通过Relief-F算法对特征向量作进一步筛选,剔除冗余。最后,利用极限学习机进行故障诊断。试验分析结果表明,所提方法能够有效提取区分度明显的风电机组齿轮箱故障特征,实现了齿轮箱故障的准确识别。该研究为风电机组齿轮箱故障诊断研究提供了参考,同时具有一定的实际工程应用价值。
关键词
风电机组齿轮箱
经验小波变换
信号重构
特征提取
最优参数精细复合多尺度散布熵
Relief-F
极限学习机
故障诊断
Keywords
Wind turbine gearbox
Empirical wavelet transform(EWT)
Signal reconstruction
Feature extraction
optimal
parameters
refined
compound
multi-scale
dispersion
entropy
(
oprcmde
)
Relief-F
Extreme learning machine(ELM)
Fault diagnosis
分类号
TH132.4 [机械工程—机械制造及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于EWT-OPRCMDE-ELM的风电机组齿轮箱故障诊断研究
李辉
李宣
贾嵘
罗兴琦
白亮
《自动化仪表》
CAS
2021
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部