期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Frequency Weighting Filter Design for Automotive Ride Comfort Evaluation 被引量:3
1
作者 DU Feng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第4期727-738,共12页
Few study gives guidance to design weighting filters according to the frequency weighting factors,and the additional evaluation method of automotive ride comfort is not made good use of in some countries.Based on the ... Few study gives guidance to design weighting filters according to the frequency weighting factors,and the additional evaluation method of automotive ride comfort is not made good use of in some countries.Based on the regularities of the weighting factors,a method is proposed and the vertical and horizontal weighting filters are developed.The whole frequency range is divided several times into two parts with respective regularity.For each division,a parallel filter constituted by a low-and a high-pass filter with the same cutoff frequency and the quality factor is utilized to achieve section factors.The cascading of these parallel filters obtains entire factors.These filters own a high order.But,low order filters are preferred in some applications.The bilinear transformation method and the least P-norm optimal infinite impulse response(IIR) filter design method are employed to develop low order filters to approximate the weightings in the standard.In addition,with the window method,the linear phase finite impulse response(FIR) filter is designed to keep the signal from distorting and to obtain the staircase weighting.For the same case,the traditional method produces 0.330 7 m · s^–2 weighted root mean square(r.m.s.) acceleration and the filtering method gives 0.311 9 m · s^–2 r.m.s.The fourth order filter for approximation of vertical weighting obtains 0.313 9 m · s^–2 r.m.s.Crest factors of the acceleration signal weighted by the weighting filter and the fourth order filter are 3.002 7 and 3.011 1,respectively.This paper proposes several methods to design frequency weighting filters for automotive ride comfort evaluation,and these developed weighting filters are effective. 展开更多
关键词 frequency weighting ride comfort evaluation least P-norm optimal method bilinear transformation weighting filter design
下载PDF
Optimization and evaluation of fish oil rnicrocapsules 被引量:4
2
作者 Hui Liu Lia nyan Wang +4 位作者 Tingyuan Yang Guifeng Zhang Jian Huang Jing Sun Junsheng Huo 《Particuology》 SCIE EI CAS CSCD 2016年第6期162-168,共7页
Fish oil microcapsules were prepared using two natural polysaccharides, alginate and chitosan, as the wall materials. A response surface methodology (RSM) was used to optimize the conditions for fish oil encapsulati... Fish oil microcapsules were prepared using two natural polysaccharides, alginate and chitosan, as the wall materials. A response surface methodology (RSM) was used to optimize the conditions for fish oil encapsulation efficiency (FOEE). The FOEE was investigated with respect to three key-variables in the RSM: ratio of inner oil phase to aqueous phase (X1 w/w); concentration of the aqueous phase (X2, wt%); and ratio of the aqueous phase to outer oil phase (X3, v/v). The optimal formulation obtained from the RSM model, i.e., 2.7:1 (X1), 1.6 wt% (X2), and 11.5:1 (X3), gave a FOEE of 28%. The model was validated and the fish oil microcapsules prepared under the optimized conditions were characterized in terms of particle size, polydispersity index (PDI), zeta potential, surface morphology, and in vitro release. The average droplet size, PDI, and zeta potential were 915 nm, 0.038, and +5.2 mV, respectively. The fish oil microcapsules were highly uniform microspheres, and had an accumulative release rate of 77.7% in 270 min in a gastrointestinal model, indicating their potential as an alternative carrier for the controlled release of fish oil. In conclusion, formulating optimal microencapsulation conditions by the RSM can be applied to the microencapsulation of various oil-soluble nutrients for food applications. 展开更多
关键词 optimization Microencapsulation Fish oil evaluation Response surface methodology
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部