期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
Optimization and Simulation of Plastic Injection Process using Genetic Algorithm and Moldflow 被引量:13
1
作者 Sigit Yoewono Martowibowo Agung Kaswadi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第2期398-406,共9页
The use of plastic-based products is continuously increasing. The increasing demands for thinner products, lower production costs, yet higher product quality has triggered an increase in the number of research project... The use of plastic-based products is continuously increasing. The increasing demands for thinner products, lower production costs, yet higher product quality has triggered an increase in the number of research projects on plastic molding processes. An important branch of such research is focused on mold cooling system. Conventional cooling systems are most widely used because they are easy to make by using conventional machining processes. However, the non-uniform cooling processes are considered as one of their weaknesses. Apart from the conven- tional systems, there are also conformal cooling systems that are designed for faster and more uniform plastic mold cooling. In this study, the conformal cooling system is applied for the production of bowl-shaped product made of PP AZ564. Optimization is conducted to initiate machine setup parameters, namely, the melting temperature, injection pressure, holding pressure and holding time. The genetic algorithm method and Moldflow were used to optimize the injection process parameters at a minimum cycle time. It is found that, an optimum injection molding processes could be obtained by setting the parameters to the following values: TM=180℃; Pinj = 20MPa; Phold= 16MPa and thold=8s, with a cycle time of 14.11 s. Experiments using the conformal cooling system yielded an average cycle time of 14.19 s. The studied conformal cooling system yielded a volumetric shrinkage of 5.61% and the wall shear stress was found at 0.17 MPa. The difference between the cycle time obtained through simulations and experiments using the conformal cooling system was insignificant (below 1%). Thus, combining process parameters optimization and simulations by using genetic algorithm method with Moldflow can be considered as valid. 展开更多
关键词 Conformal cooling Parameters optimization genetic algorithm MOLDFLOW Cycle time
下载PDF
MODIFIED GENETIC ALGORITHM APPLIED TO SOLVE PRODUCT FAMILY OPTIMIZATION PROBLEM 被引量:8
2
作者 CHEN Chunbao WANG Liya 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第4期106-111,共6页
The product family design problem solved by evolutionary algorithms is discussed. A successful product family design method should achieve an optimal tradeoff among a set of competing objectives, which involves maximi... The product family design problem solved by evolutionary algorithms is discussed. A successful product family design method should achieve an optimal tradeoff among a set of competing objectives, which involves maximizing commonality across the family of products and optimizing the performances of each product in the family. A 2-level chromosome structured genetic algorithm (2LCGA) is proposed to solve this class of problems and its performance is analyzed in comparing its results with those obtained with other methods. By interpreting the chromosome as a 2-level linear structure, the variable commonality genetic algorithm (GA) is constructed to vary the amount of platform commonality and automatically searches across varying levels of commonality for the platform while trying to resolve the tradeoff between commonality and individual product performance within the product family during optimization process. By incorporating a commonality assessing index to the problem formulation, the 2LCGA optimize the product platform and its corresponding family of products in a single stage, which can yield improvements in the overall performance of the product family compared with two-stage approaches (the first stage involves determining the best settings for the platform variables and values of unique variables are found for each product in the second stage). The scope of the algorithm is also expanded by introducing a classification mechanism to allow mul- tiple platforms to be considered during product family optimization, offering opportunities for superior overall design by more efficacious tradeoffs between commonality and performance. The effectiveness of 2LCGA is demonstrated through the design of a family of universal electric motors and comparison against previous results. 展开更多
关键词 Product family design Product platform genetic algorithm optimization
下载PDF
DOA and Power Estimation Using Genetic Algorithm and Fuzzy Discrete Particle Swarm Optimization 被引量:3
3
作者 Jia-Zhou Liu Zhi-Qin Zhao +1 位作者 Zi-Yuan He Qing-Huo Liu 《Journal of Electronic Science and Technology》 CAS 2014年第1期71-75,共5页
Aiming to reduce the computational costs and converge to global optimum, a novel method is proposed to solve the optimization of a cost function in the estimation of direction of arrival (DOA). In this method, a gen... Aiming to reduce the computational costs and converge to global optimum, a novel method is proposed to solve the optimization of a cost function in the estimation of direction of arrival (DOA). In this method, a genetic algorithm (GA) and fuzzy discrete particle swarm optimization (FDPSO) are applied to optimize the direction of arrival and power parameters of the mode simultaneously. Firstly, the GA algorithm is applied to make the solution fall into the global searching. Secondly, the FDPSO method is utilized to narrow down the search field. In FDPSO, a chaotic factor and a crossover method are added to speed up the convergence. This approach has been demonstrated through some computational simulations. It is shown that the proposed algorithm can estimate both the DOA and the powers accurately. It is more efficient than some present methods, such as the Newton-like algorithm, Akaike information critical (AIC), particle swarm optimization (PSO), and genetic algorithm with particle swarm optimization (GA-PSO). 展开更多
关键词 Direction of arrival genetic algorithm particle swarm optimization.
下载PDF
An adaptive reanalysis method for genetic algorithm with application to fast truss optimization 被引量:2
4
作者 Tao Xu Wenjie Zuo +2 位作者 Tianshuang Xu Guangcai Song Ruichuan Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第2期225-234,共10页
Although the genetic algorithm (GA) for structural optimization is very robust, it is very computationally intensive and hence slower than optimality criteria and mathematical programming methods. To speed up the de... Although the genetic algorithm (GA) for structural optimization is very robust, it is very computationally intensive and hence slower than optimality criteria and mathematical programming methods. To speed up the design process, the authors present an adaptive reanalysis method for GA and its applications in the optimal design of trusses. This reanalysis technique is primarily derived from the Kirsch's combined approximations method. An iteration scheme is adopted to adaptively determine the number of basis vectors at every generation. In order to illustrate this method, three classical examples of optimal truss design are used to validate the proposed reanalysis-based design procedure. The presented numerical results demonstrate that the adaptive reanalysis technique affects very slightly the accuracy of the optimal solutions and does accelerate the design process, especially for large-scale structures. 展开更多
关键词 Truss structure Adaptive reanalysis ·genetic algorithm ·Fast optimization
下载PDF
Low side lobe pattern synthesis using projection method with genetic algorithm for truncated cone conformal phased arrays 被引量:7
5
作者 Guoqi Zeng Siyin Li +1 位作者 Yan Zhang Shanwei L 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第4期554-559,共6页
A hybrid method for synthesizing antenna's three dimensional (3D) pattern is proposed to obtain the low sidelobe feature of truncated cone conformal phased arrays. In this method, the elements of truncated cone con... A hybrid method for synthesizing antenna's three dimensional (3D) pattern is proposed to obtain the low sidelobe feature of truncated cone conformal phased arrays. In this method, the elements of truncated cone conformal phased arrays are projected to the tangent plane in one generatrix of the truncated cone. Then two dimensional (2D) Chebyshev amplitude distribution optimization is respectively used in two mutual vertical directions of the tangent plane. According to the location of the elements, the excitation current amplitude distribution of each element on the conformal structure is derived reversely, then the excitation current amplitude is further optimized by using the genetic algorithm (GA). A truncated cone problem with 8x8 elements on it, and a 3D pattern desired side lobe level (SLL) up to 35 dB, is studied. By using the hybrid method, the optimal goal is accomplished with acceptable CPU time, which indicates that this hybrid method for the low sidelobe synthesis is feasible. 展开更多
关键词 conformal phased array low side lobe pattern synthe-sis projection method genetic algorithm optimization.
下载PDF
Optimizing combination of aircraft maintenance tasks by adaptive genetic algorithm based on cluster search 被引量:4
6
作者 Huaiyuan Li Hongfu Zuo +3 位作者 Kun Liang Juan Xu Jing Cai Junqiang Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期140-156,共17页
It is significant to combine multiple tasks into an optimal work package in decision-making of aircraft maintenance to reduce cost,so a cost rate model of combinatorial maintenance is an urgent need.However,the optima... It is significant to combine multiple tasks into an optimal work package in decision-making of aircraft maintenance to reduce cost,so a cost rate model of combinatorial maintenance is an urgent need.However,the optimal combination under various constraints not only involves numerical calculations but also is an NP-hard combinatorial problem.To solve the problem,an adaptive genetic algorithm based on cluster search,which is divided into two phases,is put forward.In the first phase,according to the density,all individuals can be homogeneously scattered over the whole solution space through crossover and mutation and better individuals are collected as candidate cluster centres.In the second phase,the search is confined to the neighbourhood of some selected possible solutions to accurately solve with cluster radius decreasing slowly,meanwhile all clusters continuously move to better regions until all the peaks in the question space is searched.This algorithm can efficiently solve the combination problem.Taking the optimization on decision-making of aircraft maintenance by the algorithm for an example,maintenance which combines multiple parts or tasks can significantly enhance economic benefit when the halt cost is rather high. 展开更多
关键词 cluster search genetic algorithm combinatorial optimization multi-part maintenance grouping maintenance.
下载PDF
APPLICATION OF INTEGER CODING ACCELERATING GENETIC ALGORITHM IN RECTANGULAR CUTTING STOCK PROBLEM 被引量:3
7
作者 FANG Hui YIN Guofu LI Haiqing PENG Biyou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第3期335-339,共5页
An improved genetic algorithm and its application to resolve cutting stock problem arc presented. It is common to apply simple genetic algorithm (SGA) to cutting stock problem, but the huge amount of computing of SG... An improved genetic algorithm and its application to resolve cutting stock problem arc presented. It is common to apply simple genetic algorithm (SGA) to cutting stock problem, but the huge amount of computing of SGA is a serious problem in practical application. Accelerating genetic algorithm (AGA) based on integer coding and AGA's detailed steps are developed to reduce the amount of computation, and a new kind of rectangular parts blank layout algorithm is designed for rectangular cutting stock problem. SGA is adopted to produce individuals within given evolution process, and the variation interval of these individuals is taken as initial domain of the next optimization process, thus shrinks searching range intensively and accelerates the evaluation process of SGA. To enhance the diversity of population and to avoid the algorithm stagnates at local optimization result, fixed number of individuals are produced randomly and replace the same number of parents in every evaluation process. According to the computational experiment, it is observed that this improved GA converges much sooner than SGA, and is able to get the balance of good result and high efficiency in the process of optimization for rectangular cutting stock problem. 展开更多
关键词 Accelerating genetic algorithm Efficiency of optimization Cutting stock problem
下载PDF
Satellite constellation design with genetic algorithms based on system performance
8
作者 Xueying Wang Jun Li +2 位作者 Tiebing Wang Wei An Weidong Sheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期379-385,共7页
Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optic... Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optical system by taking into account the system tasks(i.e., target detection and tracking). We then propose a new non-dominated sorting genetic algorithm(NSGA) to maximize the system surveillance performance. Pareto optimal sets are employed to deal with the conflicts due to the presence of multiple cost functions. Simulation results verify the validity and the improved performance of the proposed technique over benchmark methods. 展开更多
关键词 space optical system non-dominated sorting genetic algorithm(NSGA) Pareto optimal set satellite constellation design surveillance performance
下载PDF
PART BUILDING ORIENTATION OPTIMIZATION METHOD IN STEREOLITHOGRAPHY 被引量:7
9
作者 HONG Jun WANG Wei TANG Yiping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第1期14-18,共5页
Aiming at the part quality and building time problems in stereolithography (SL) caused by unreasonable building orientation, a part building orientation decision method in SL rapid prototyping (RP) is carried out.... Aiming at the part quality and building time problems in stereolithography (SL) caused by unreasonable building orientation, a part building orientation decision method in SL rapid prototyping (RP) is carried out. Bringing into full consideration of the deformation, stair-stepping effect, overcure effect and building time related to the part fabrication orientation, and using evaluation function method, a multi-objective optimization model for the building orientation is defined. According to the difference in the angles between normal vectors of triangular facets in standard triangulation language (STL) model and z axis, the expressions of deformation area, stair-stepping area, overcure area are established. According to the characteristics in SL process, part building time is divided into four sections, that is, hatching scanning time, outline scanning time, support building time and layer waiting time. Expressions of each building time section are given. Considering the features of this optimization model, genetic algorithm (GA) is used to derive the optimization objective, related software is developed and optimization results are tested through experiments. Application shows that this method can effectively solve the quality and efficiency troubles caused by unreasonable part building orientation, an automatic orientation-determining program is developed and verified through test. 展开更多
关键词 Stereolithography (SL) Rapid prototyping (RP) Orientation optimization genetic algorithm (GA)
下载PDF
Optimization of multi-color laser waveform for high-order harmonic generation 被引量:1
10
作者 金成 林启东 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第9期157-168,共12页
With the development of laser technologies,multi-color light-field synthesis with complete amplitude and phase control would make it possible to generate arbitrary optical waveforms.A practical optimization algorithm ... With the development of laser technologies,multi-color light-field synthesis with complete amplitude and phase control would make it possible to generate arbitrary optical waveforms.A practical optimization algorithm is needed to generate such a waveform in order to control strong-field processes.We review some recent theoretical works of the optimization of amplitudes and phases of multi-color lasers to modify the single-atom high-order harmonic generation based on genetic algorithm.By choosing different fitness criteria,we demonstrate that:(i) harmonic yields can be enhanced by 10 to 100 times,(ii) harmonic cutoff energy can be substantially extended,(iii) specific harmonic orders can be selectively enhanced,and(iv) single attosecond pulses can be efficiently generated.The possibility of optimizing macroscopic conditions for the improved phase matching and low divergence of high harmonics is also discussed.The waveform control and optimization are expected to be new drivers for the next wave of breakthrough in the strong-field physics in the coming years. 展开更多
关键词 high-order harmonic generation waveform optimization genetic algorithm single-attosecond pulse
下载PDF
Kinematics Analysis and Optimization of the Fast Shearing-extrusion Joining Mechanism for Solid-state Metal 被引量:5
11
作者 ZHANG Shuangjie YAO Yunfeng +3 位作者 LI Lingchong WANG Lijuan LI Junxia LI Qiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第6期1123-1131,共9页
Dynamical Joining of the solid-state metal is the key technology to realize endless hot rolling. The heating and laser welding method both require long joining time. Based on super deformation method, a 7-bar and 2-sl... Dynamical Joining of the solid-state metal is the key technology to realize endless hot rolling. The heating and laser welding method both require long joining time. Based on super deformation method, a 7-bar and 2-slider mechanism was developed in Japan, and the joining time is less than 0.5 s, however the length of each bar are not reported and this mechanism is complex. A relatively simple 6-bar and 1-slider mechanism is put forward, which can realize the shearing and extrusion motion of the top and bottom blades with a speed approximately equal to the speed of the metal plates. In order to study the kinematics property of the double blades, based on complex vector method, the multi-rigid-body model is built, and the displacement and speed functions of the double blades, the joining time and joining thickness are deduced, the kinematics analysis shows that the initial parameters can't satisfy the joining process. Hence, optimization of this mechanism is employed using genetic algorithm(GA) and the optimization parameters of this mechanism are obtained, the kinematics analysis show that the joining time is less than 0.1 s, the joining thickness is more than 80% of the thickness of the solid-state metal, and the horizontal speeds of the blades are improved. A new mechanism is provided for the joining of the solid-state metal and a foundation is laid for the design of the device. 展开更多
关键词 endless rolling solid-state metal dynamical joining mechanism kinematic optimization genetic algorithm
下载PDF
Genetic Based Approach for Optimal Power and Channel Allocation to Enhance D2D Underlaied Cellular Network Capacity in 5G 被引量:1
12
作者 Ahmed.A.Rosas Mona Shokair M.I.Dessouky 《Computers, Materials & Continua》 SCIE EI 2022年第8期3751-3762,共12页
With the obvious throughput shortage in traditional cellular radio networks,Device-to-Device(D2D)communications has gained a lot of attention to improve the utilization,capacity and channel performance of nextgenerati... With the obvious throughput shortage in traditional cellular radio networks,Device-to-Device(D2D)communications has gained a lot of attention to improve the utilization,capacity and channel performance of nextgeneration networks.In this paper,we study a joint consideration of power and channel allocation based on genetic algorithm as a promising direction to expand the overall network capacity for D2D underlaied cellular networks.The genetic based algorithm targets allocating more suitable channels to D2D users and finding the optimal transmit powers for all D2D links and cellular users efficiently,aiming to maximize the overall system throughput of D2D underlaied cellular network with minimum interference level,while satisfying the required quality of service QoS of each user.The simulation results show that our proposed approach has an advantage in terms of maximizing the overall system utilization than fixed,random,BAT algorithm(BA)and Particle Swarm Optimization(PSO)based power allocation schemes. 展开更多
关键词 5G D2D communication spectrum allocation power allocation genetic algorithm optimization BAT-optimization particle swarm optimization
下载PDF
Resource Allocation Algorithm Based on PSO-GA for Multi-User OFDM System
13
作者 Hao-Ye Zhang Jin-Ping Mei Shi-Bing Zhang 《Journal of Electronic Science and Technology》 CAS CSCD 2015年第1期68-72,共5页
In order to minimize the transmitted power in the multi-user orthogonal frequency division multiplexing(OFDM) system, a scheme combining the improved particle swarm optimization(POS) algorithm with genetic algori... In order to minimize the transmitted power in the multi-user orthogonal frequency division multiplexing(OFDM) system, a scheme combining the improved particle swarm optimization(POS) algorithm with genetic algorithm(GA) is proposed to optimize the sub-carriers and bits allocation. In the algorithm, a random velocity between the maximum and minimum particle velocity is used as the updating velocity instead of maximum or minimum velocity when the updated particle velocity is higher than the maximum particle velocity or lower than the minimum particle velocity. Then, the convergence population is used as the initial population of the genetic algorithm to optimize the subcarriers and bits allocation further. Simulation results show that the transmitted power of the proposed algorithm is about 2 d B to 10 d B lower than that of the genetic algorithm, particle swarm optimization algorithm, and Zhang's algorithm. 展开更多
关键词 Bit allocation orthogonal frequency division multiplexing particle swarm optimization algorithm with genetic algorithm sub-carri
下载PDF
Genetic Algorithm-Based Optimization Used in Rolling Schedule 被引量:14
14
作者 YANG Jing-ming CHE Hai-jun DOU Fu-ping ZHOU Tao 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2008年第2期18-22,共5页
A genetic algorithm-based optimization was used for 1 370 mm tandem cold rolling schedule,in which the press rates were coded and operated.The superiority individual is reserved in every generation.Analysis and compar... A genetic algorithm-based optimization was used for 1 370 mm tandem cold rolling schedule,in which the press rates were coded and operated.The superiority individual is reserved in every generation.Analysis and comparison of optimized schedule with the existing schedule were offered.It is seen that the performance of the optimal rolling schedule is satisfactory and promising. 展开更多
关键词 tandem cold rolling rolling schedule energy consumption genetic algorithm optimization
原文传递
Multi-objective genetic algorithms based structural optimization and experimental investigation of the planet carrier in wind turbine gearbox 被引量:4
15
作者 Pengxing YI Lijian DONG Tielin SHI 《Frontiers of Mechanical Engineering》 SCIE CSCD 2014年第4期354-367,共14页
To improve the dynamic performance and reduce the weight of the planet carrier in wind turbine gearbox, a multi-objective optimization method, which is driven by the maximum deformation, the maximum stress and the min... To improve the dynamic performance and reduce the weight of the planet carrier in wind turbine gearbox, a multi-objective optimization method, which is driven by the maximum deformation, the maximum stress and the minimum mass of the studied part, is proposed by combining the response surface method and genetic algorithms in this paper. Firstly, the design points' distribution for the design variables of the planet carrier is established with the central composite design (CCD) method. Then, based on the computing results of finite element analysis (FEA), the response surface analysis is conducted to find out the proper sets of design variable values. And a multi-objective genetic algorithm (MOGA) is applied to determine the direction of optimization. As well, this method is applied to design and optimize the planet carrier in a 1.5 MW wind turbine gearbox, the results of which are validated by an experimental modal test. Compared with the original design, the mass and the stress of the optimized planet carrier are respectively reduced by 9.3% and 40%. Consequently, the cost of planet carrier is greatly reduced and its stability is also improved. 展开更多
关键词 planet carrier multi-objective optimization genetic algorithms wind turbine gearbox modal experiment
原文传递
VIBRATION OPTIMIZATION OF A PASSIVE SUSPENSION SYSTEM VIA GENETIC ALGORITHM
16
作者 S.D.JABEEN 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2013年第1期1-21,共21页
In this paper,we have formulated mathematical models to optimize the bouncing transmissibility of the sprung mass of the half car system with passengers’seat suspensions considering different road conditions.The corr... In this paper,we have formulated mathematical models to optimize the bouncing transmissibility of the sprung mass of the half car system with passengers’seat suspensions considering different road conditions.The corresponding problem has been solved with the help of advanced real coded Genetic Algorithm(GA).The nonlinearity of suspension spring and damper,which are the most important characteristics of the suspension,has been taken into account in order to validate the model to real applications.The nonlinear cubic polynomial has been used to describe the spring characteristic and a quadratic polynomial has been used to describe the damper characteristic.The coefficients of each polynomial represent the design parameters of the suspension system and are to be determined.To find these parameters we have formulated a nonlinear optimization problem in which the bouncing transmissibility of the sprung mass at the center of mass has been minimized with respect to technological constraints and the constraints which satisfy the performance as per ISO 2631 standards.The advanced real coded GA has been used to solve this problem in time domain and the results obtained have been compared to those obtained using the existing design parameters.The objective function and the constraints have been evaluated by simulating the vehicle model over two roads with multiple bumps at uniform velocity. 展开更多
关键词 Passive suspension vibration behavior road bump genetic algorithm and optimization.
原文传递
MODELING, VALIDATION AND OPTIMAL DESIGN OF THE CLAMPING FORCE CONTROL VALVE USED IN CONTINUOUSLY VARIABLE TRANSMISSION 被引量:4
17
作者 ZHOU Yunshan LIU Jin'gang +1 位作者 CAIYuanchun ZOU Naiwei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第4期51-55,共5页
Associated dynamic performance of the clamping force control valve used in continuously variable transmission (CVT) is optimized. Firstly, the structure and working principle of the valve are analyzed, and then a dy... Associated dynamic performance of the clamping force control valve used in continuously variable transmission (CVT) is optimized. Firstly, the structure and working principle of the valve are analyzed, and then a dynamic model is set up by means of mechanism analysis. For the purpose of checking the validity of the modeling method, a prototype workpiece of the valve is manufactured for comparison test, and its simulation result follows the experimental result quite well. An associated performance index is founded considering the response time, overshoot and saving energy, and five structural parameters are selected to adjust for deriving the optimal associated performance index. The optimization problem is solved by the genetic algorithm (GA) with necessary constraints. Finally, the properties of the optimized valve are compared with those of the prototype workpiece, and the results prove that the dynamic performance indexes of the optimized valve are much better than those of the prototype workpiece. 展开更多
关键词 Dynamic modeling Optimal design genetic algorithm Clamping force control valve Continuously variable transmission (CVT)
下载PDF
Modeling and Optimizing of Deformed Steel Bars Hot Rolling 被引量:1
18
作者 Peng Zhang Yunhui Du Xueping Ren(Material Science and Engineering School, University’ of Science and Technology’ Beijing, Beijing 100083) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1999年第4期289-291,共3页
Based on experimental data, a nonlinear model about tensile strength and technical parameters such as Mn and St content, finishing rolling speed and finishing rolling temperature for deformed steel bars in the process... Based on experimental data, a nonlinear model about tensile strength and technical parameters such as Mn and St content, finishing rolling speed and finishing rolling temperature for deformed steel bars in the process of hot rolling was established by using artificial neural networks. The model can be optimized with a genetic algorithm. The optimum rolling parameters were obtained. 展开更多
关键词 artificial neural networks MODELING genetic algorithm optimizing
下载PDF
Bio-inspired Hybrid Feature Selection Model for Intrusion Detection
19
作者 Adel Hamdan Mohammad Tariq Alwada’n +2 位作者 Omar Almomani Sami Smadi Nidhal ElOmari 《Computers, Materials & Continua》 SCIE EI 2022年第10期133-150,共18页
Intrusion detection is a serious and complex problem.Undoubtedly due to a large number of attacks around the world,the concept of intrusion detection has become very important.This research proposes a multilayer bioin... Intrusion detection is a serious and complex problem.Undoubtedly due to a large number of attacks around the world,the concept of intrusion detection has become very important.This research proposes a multilayer bioinspired feature selection model for intrusion detection using an optimized genetic algorithm.Furthermore,the proposed multilayer model consists of two layers(layers 1 and 2).At layer 1,three algorithms are used for the feature selection.The algorithms used are Particle Swarm Optimization(PSO),Grey Wolf Optimization(GWO),and Firefly Optimization Algorithm(FFA).At the end of layer 1,a priority value will be assigned for each feature set.At layer 2 of the proposed model,the Optimized Genetic Algorithm(GA)is used to select one feature set based on the priority value.Modifications are done on standard GA to perform optimization and to fit the proposed model.The Optimized GA is used in the training phase to assign a priority value for each feature set.Also,the priority values are categorized into three categories:high,medium,and low.Besides,the Optimized GA is used in the testing phase to select a feature set based on its priority.The feature set with a high priority will be given a high priority to be selected.At the end of phase 2,an update for feature set priority may occur based on the selected features priority and the calculated F-Measures.The proposed model can learn and modify feature sets priority,which will be reflected in selecting features.For evaluation purposes,two well-known datasets are used in these experiments.The first dataset is UNSW-NB15,the other dataset is the NSL-KDD.Several evaluation criteria are used,such as precision,recall,and F-Measure.The experiments in this research suggest that the proposed model has a powerful and promising mechanism for the intrusion detection system. 展开更多
关键词 Intrusion detection Machine learning Optimized genetic algorithm(GA) Particle Swarm optimization algorithms(PSO) Grey Wolf optimization algorithms(GWO) FireFly optimization algorithms(FFA) genetic algorithm(GA)
下载PDF
A self-adaptive stochastic resonance system design and study in chaotic interference
20
作者 鲁康 王辅忠 +1 位作者 张光璐 付卫红 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期38-42,共5页
The us of stochastic resonance (SR) can effectively achieve the detection of weak signal in white noise and colored noise. However, SR in chaotic interference is seldom involved. In view of the requirements for the ... The us of stochastic resonance (SR) can effectively achieve the detection of weak signal in white noise and colored noise. However, SR in chaotic interference is seldom involved. In view of the requirements for the detection of weak signal in the actual project and the relationship between the signal, chaotic interference, and nonlinear system in the bistable system, a self-adaptive SR system based on genetic algorithm is designed in this paper. It regards the output signal-to-noise ratio (SNR) as a fitness function and the system parameters are jointly encoded to gain optimal bistable system parameters, then the input signal is processed in the SR system with the optimal system parameters. Experimental results show that the system can keep the best state of SR under the condition of low input SNR, which ensures the effective detection and process of weak signal in low input SNR. 展开更多
关键词 chaotic interference self-adaptive genetic algorithm optimal SR
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部