This paper focuses on wireless-powered communication systems,which are increasingly relevant in the Internet of Things(IoT)due to their ability to extend the operational lifetime of devices with limited energy.The mai...This paper focuses on wireless-powered communication systems,which are increasingly relevant in the Internet of Things(IoT)due to their ability to extend the operational lifetime of devices with limited energy.The main contribution of the paper is a novel approach to minimize the secrecy outage probability(SOP)in these systems.Minimizing SOP is crucial for maintaining the confidentiality and integrity of data,especially in situations where the transmission of sensitive data is critical.Our proposed method harnesses the power of an improved biogeography-based optimization(IBBO)to effectively train a recurrent neural network(RNN).The proposed IBBO introduces an innovative migration model.The core advantage of IBBO lies in its adeptness at maintaining equilibrium between exploration and exploitation.This is accomplished by integrating tactics such as advancing towards a random habitat,adopting the crossover operator from genetic algorithms(GA),and utilizing the global best(Gbest)operator from particle swarm optimization(PSO)into the IBBO framework.The IBBO demonstrates its efficacy by enabling the RNN to optimize the system parameters,resulting in significant outage probability reduction.Through comprehensive simulations,we showcase the superiority of the IBBO-RNN over existing approaches,highlighting its capability to achieve remarkable gains in SOP minimization.This paper compares nine methods for predicting outage probability in wireless-powered communications.The IBBO-RNN achieved the highest accuracy rate of 98.92%,showing a significant performance improvement.In contrast,the standard RNN recorded lower accuracy rates of 91.27%.The IBBO-RNN maintains lower SOP values across the entire signal-to-noise ratio(SNR)spectrum tested,suggesting that the method is highly effective at optimizing system parameters for improved secrecy even at lower SNRs.展开更多
Lung cancer is among the most frequent cancers in the world,with over one million deaths per year.Classification is required for lung cancer diagnosis and therapy to be effective,accurate,and reliable.Gene expression ...Lung cancer is among the most frequent cancers in the world,with over one million deaths per year.Classification is required for lung cancer diagnosis and therapy to be effective,accurate,and reliable.Gene expression microarrays have made it possible to find genetic biomarkers for cancer diagnosis and prediction in a high-throughput manner.Machine Learning(ML)has been widely used to diagnose and classify lung cancer where the performance of ML methods is evaluated to identify the appropriate technique.Identifying and selecting the gene expression patterns can help in lung cancer diagnoses and classification.Normally,microarrays include several genes and may cause confusion or false prediction.Therefore,the Arithmetic Optimization Algorithm(AOA)is used to identify the optimal gene subset to reduce the number of selected genes.Which can allow the classifiers to yield the best performance for lung cancer classification.In addition,we proposed a modified version of AOA which can work effectively on the high dimensional dataset.In the modified AOA,the features are ranked by their weights and are used to initialize the AOA population.The exploitation process of AOA is then enhanced by developing a local search algorithm based on two neighborhood strategies.Finally,the efficiency of the proposed methods was evaluated on gene expression datasets related to Lung cancer using stratified 4-fold cross-validation.The method’s efficacy in selecting the optimal gene subset is underscored by its ability to maintain feature proportions between 10%to 25%.Moreover,the approach significantly enhances lung cancer prediction accuracy.For instance,Lung_Harvard1 achieved an accuracy of 97.5%,Lung_Harvard2 and Lung_Michigan datasets both achieved 100%,Lung_Adenocarcinoma obtained an accuracy of 88.2%,and Lung_Ontario achieved an accuracy of 87.5%.In conclusion,the results indicate the potential promise of the proposed modified AOA approach in classifying microarray cancer data.展开更多
Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been...Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been widely employed to solve scheduling problems.However,HHO suffers from premature convergence when solving NP-hard problems.Therefore,this paper proposes an improved HHO algorithm(GNHHO)to solve the FJSP.GNHHO introduces an elitism strategy,a chaotic mechanism,a nonlinear escaping energy update strategy,and a Gaussian random walk strategy to prevent premature convergence.A flexible job shop scheduling model is constructed,and the static and dynamic FJSP is investigated to minimize the makespan.This paper chooses a two-segment encoding mode based on the job and the machine of the FJSP.To verify the effectiveness of GNHHO,this study tests it in 23 benchmark functions,10 standard job shop scheduling problems(JSPs),and 5 standard FJSPs.Besides,this study collects data from an agricultural company and uses the GNHHO algorithm to optimize the company’s FJSP.The optimized scheduling scheme demonstrates significant improvements in makespan,with an advancement of 28.16%for static scheduling and 35.63%for dynamic scheduling.Moreover,it achieves an average increase of 21.50%in the on-time order delivery rate.The results demonstrate that the performance of the GNHHO algorithm in solving FJSP is superior to some existing algorithms.展开更多
In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible t...In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible to unsafe events(such as falls)that can have disastrous consequences.However,automatically detecting falls fromvideo data is challenging,and automatic fall detection methods usually require large volumes of training data,which can be difficult to acquire.To address this problem,video kinematic data can be used as training data,thereby avoiding the requirement of creating a large fall data set.This study integrated an improved particle swarm optimization method into a double interactively recurrent fuzzy cerebellar model articulation controller model to develop a costeffective and accurate fall detection system.First,it obtained an optical flow(OF)trajectory diagram from image sequences by using the OF method,and it solved problems related to focal length and object offset by employing the discrete Fourier transform(DFT)algorithm.Second,this study developed the D-IRFCMAC model,which combines spatial and temporal(recurrent)information.Third,it designed an IPSO(Improved Particle Swarm Optimization)algorithm that effectively strengthens the exploratory capabilities of the proposed D-IRFCMAC(Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller)model in the global search space.The proposed approach outperforms existing state-of-the-art methods in terms of action recognition accuracy on the UR-Fall,UP-Fall,and PRECIS HAR data sets.The UCF11 dataset had an average accuracy of 93.13%,whereas the UCF101 dataset had an average accuracy of 92.19%.The UR-Fall dataset had an accuracy of 100%,the UP-Fall dataset had an accuracy of 99.25%,and the PRECIS HAR dataset had an accuracy of 99.07%.展开更多
Human Action Recognition(HAR)in uncontrolled environments targets to recognition of different actions froma video.An effective HAR model can be employed for an application like human-computer interaction,health care,p...Human Action Recognition(HAR)in uncontrolled environments targets to recognition of different actions froma video.An effective HAR model can be employed for an application like human-computer interaction,health care,person tracking,and video surveillance.Machine Learning(ML)approaches,specifically,Convolutional Neural Network(CNN)models had beenwidely used and achieved impressive results through feature fusion.The accuracy and effectiveness of these models continue to be the biggest challenge in this field.In this article,a novel feature optimization algorithm,called improved Shark Smell Optimization(iSSO)is proposed to reduce the redundancy of extracted features.This proposed technique is inspired by the behavior ofwhite sharks,and howthey find the best prey in thewhole search space.The proposed iSSOalgorithmdivides the FeatureVector(FV)into subparts,where a search is conducted to find optimal local features fromeach subpart of FV.Once local optimal features are selected,a global search is conducted to further optimize these features.The proposed iSSO algorithm is employed on nine(9)selected CNN models.These CNN models are selected based on their top-1 and top-5 accuracy in ImageNet competition.To evaluate the model,two publicly available datasets UCF-Sports and Hollywood2 are selected.展开更多
With the rapid development of new energy technologies, lithium batteries are widely used in the field of energy storage systems and electric vehicles. The accurate prediction for the state of health(SOH) has an import...With the rapid development of new energy technologies, lithium batteries are widely used in the field of energy storage systems and electric vehicles. The accurate prediction for the state of health(SOH) has an important role in maintaining a safe and stable operation of lithium-ion batteries. To address the problems of uncertain battery discharge conditions and low SOH estimation accuracy in practical applications, this paper proposes a SOH estimation method based on constant-current battery charging section characteristics with a back-propagation neural network with an improved atom search optimization algorithm. A temperature characteristic, equal-time temperature variation(Dt_DT), is proposed by analyzing the temperature data of the battery charging section with the incremental capacity(IC) characteristics obtained from an IC analysis as an input to the data-driven prediction model. Testing and analysis of the proposed prediction model are carried out using publicly available datasets. Experimental results show that the maximum error of SOH estimation results for the proposed method in this paper is below 1.5%.展开更多
Applied linguistics means a wide range of actions which include addressing a few language-based problems or solving some language-based concerns.Emails stay in the leading positions for business as well as personal us...Applied linguistics means a wide range of actions which include addressing a few language-based problems or solving some language-based concerns.Emails stay in the leading positions for business as well as personal use.This popularity grabs the interest of individuals with malevolent inten-tions—phishing and spam email assaults.Email filtering mechanisms were developed incessantly to follow unwanted,malicious content advancement to protect the end-users.But prevailing solutions were focused on phishing email filtering and spam and whereas email labelling and analysis were not fully advanced.Thus,this study provides a solution related to email message body text automatic classification into phishing and email spam.This paper presents an Improved Fruitfly Optimization with Stacked Residual Recurrent Neural Network(IFFO-SRRNN)based on Applied Linguistics for Email Classification.The presented IFFO-SRRNN technique examines the intrinsic features of email for the identification of spam emails.At the preliminary level,the IFFO-SRRNN model follows the email pre-processing stage to make it compatible with further computation.Next,the SRRNN method can be useful in recognizing and classifying spam emails.As hyperparameters of the SRRNN model need to be effectually tuned,the IFFO algorithm can be utilized as a hyperparameter optimizer.To investigate the effectual email classification results of the IFFO-SRDL technique,a series of simulations were taken placed on public datasets,and the comparison outcomes highlight the enhancements of the IFFO-SRDL method over other recent approaches with an accuracy of 98.86%.展开更多
Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded p...Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded photonic crystals arranged in a structure composed of periodic and quasi-periodic sequences on a normalized scale.The effective dielectric function,which determines the absorption of the plasma,is subject to the basic parameters of the plasma,causing the absorption of the proposed absorber to be easily modulated by these parameters.Compared with other quasi-periodic sequences,the Octonacci sequence is superior both in relative bandwidth and absolute bandwidth.Under further optimization using IPSO with 14 parameters set to be optimized,the absorption characteristics of the proposed structure with different numbers of layers of the smallest structure unit N are shown and discussed.IPSO is also used to address angular insensitive nonreciprocal ultrawide bandwidth absorption,and the optimized result shows excellent unidirectional absorbability and angular insensitivity of the proposed structure.The impacts of the sequence number of quasi-periodic sequence M and collision frequency of plasma1ν1 to absorption in the angle domain and frequency domain are investigated.Additionally,the impedance match theory and the interference field theory are introduced to express the findings of the algorithm.展开更多
To maximize energy profit with the participation of electricity,natural gas,and district heating networks in the day-ahead market,stochastic scheduling of energy hubs taking into account the uncertainty of photovoltai...To maximize energy profit with the participation of electricity,natural gas,and district heating networks in the day-ahead market,stochastic scheduling of energy hubs taking into account the uncertainty of photovoltaic and wind resources,has been carried out.This has been done using a new meta-heuristic algorithm,improved artificial rabbits optimization(IARO).In this study,the uncertainty of solar and wind energy sources is modeled using Hang’s two-point estimating method(TPEM).The IARO algorithm is applied to calculate the best capacity of hub energy equipment,such as solar and wind renewable energy sources,combined heat and power(CHP)systems,steamboilers,energy storage,and electric cars in the day-aheadmarket.The standard ARO algorithmis developed to mimic the foraging behavior of rabbits,and in this work,the algorithm’s effectiveness in avoiding premature convergence is improved by using the dystudynamic inertia weight technique.The proposed IARO-based scheduling framework’s performance is evaluated against that of traditional ARO,particle swarm optimization(PSO),and salp swarm algorithm(SSA).The findings show that,in comparison to previous approaches,the suggested meta-heuristic scheduling framework based on the IARO has increased energy profit in day-ahead electricity,gas,and heating markets by satisfying the operational and energy hub limitations.Additionally,the results show that TPEM approach dependability consideration decreased hub energy’s profit by 8.995%as compared to deterministic planning.展开更多
The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved p...The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved particle swarmoptimization is used to optimize the reactive power planning in wind farms.First,the power flow of offshore wind farms is modeled,analyzed and calculated.To improve the global search ability and local optimization ability of particle swarm optimization,the improved particle swarm optimization adopts the adaptive inertia weight and asynchronous learning factor.Taking the minimum active power loss of the offshore wind farms as the objective function,the installation location of the reactive power compensation device is compared according to the node voltage amplitude and the actual engineering needs.Finally,a reactive power optimizationmodel based on Static Var Compensator is established inMATLAB to consider the optimal compensation capacity,network loss,convergence speed and voltage amplitude enhancement effect of SVC.Comparing the compensation methods in several different locations,the compensation scheme with the best reactive power optimization effect is determined.Meanwhile,the optimization results of the standard particle swarm optimization and the improved particle swarm optimization are compared to verify the superiority of the proposed improved algorithm.展开更多
This paper proposes a modified golden jackal optimization(IGJO)algorithm to solve the OCL(which stands for optimal cooling load)problem to minimize energy consumption.In this algorithm,many tools have been developed,s...This paper proposes a modified golden jackal optimization(IGJO)algorithm to solve the OCL(which stands for optimal cooling load)problem to minimize energy consumption.In this algorithm,many tools have been developed,such as numerical visualization,local field method,competitive selectionmethod,and iterative strategy.The IGJO algorithm is used to improve the research capabilities of the algorithm in terms of global tuning and rotation speed.In order to fully utilize the effectiveness of the proposed algorithm,three famous examples of OCL problems in basic ventilation systems were studied and compared with some previously published works.The results show that the IGJO algorithm can find solutions equal to or better than other methods.Underpinning these studies is the need to reduce energy consumption in air conditioning systems,which is a critical business and environmental decision.The Optimal Chiller Load(OCL)problem is well-known in the industry.It is the best method of operation for the refrigeration plant to satisfy the requirement of cooling.In order to solve the OCL problem,an improved Golden Jackal optimization algorithm(IGJO)was proposed.The IGJO algorithm consists of a number of parts to improve the global optimization and rotation speed.These studies are intended to address more effectively the issue of OCL,which results in energy savings in air-conditioning systems.The performance of the proposed IGJO algorithm is evaluated,and the results are compared with the results of three known OCL problems in the ventilation system.The results indicate that the IGJO method has the same or better optimization ability as other methods and can improve the energy efficiency of the system’s cold air.展开更多
Internet of things(IOT)possess cultural,commercial and social effect in life in the future.The nodes which are participating in IOT network are basi-cally attracted by the cyber-attack targets.Attack and identification...Internet of things(IOT)possess cultural,commercial and social effect in life in the future.The nodes which are participating in IOT network are basi-cally attracted by the cyber-attack targets.Attack and identification of anomalies in IoT infrastructure is a growing problem in the IoT domain.Machine Learning Based Ensemble Intrusion Detection(MLEID)method is applied in order to resolve the drawback by minimizing malicious actions in related botnet attacks on Message Queue Telemetry Transport(MQTT)and Hyper-Text Transfer Proto-col(HTTP)protocols.The proposed work has two significant contributions which are a selection of features and detection of attacks.New features are chosen from Improved Ant Colony Optimization(IACO)in the feature selection,and then the detection of attacks is carried out based on a combination of their possible proper-ties.The IACO approach is focused on defining the attacker’s important features against HTTP and MQTT.In the IACO algorithm,the constant factor is calculated against HTTP and MQTT based on the mean function for each element.Attack detection,the performance of several machine learning models are Distance Deci-sion Tree(DDT),Adaptive Neuro-Fuzzy Inference System(ANFIS)and Mahala-nobis Distance Support Vector Machine(MDSVM)were compared with predicting accurate attacks on the IoT network.The outcomes of these classifiers are combined into the ensemble model.The proposed MLEID strategy has effec-tively established malicious incidents.The UNSW-NB15 dataset is used to test the MLEID technique using data from simulated IoT sensors.Besides,the pro-posed MLEID technique has a greater detection rate and an inferior rate of false-positive compared to other conventional techniques.展开更多
Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a ...Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a mathematical model for multi-depot heterogeneous vehicle routing problem with soft time windows (MDHVRPSTW) is established. An improved ant colony optimization (IACO) is proposed for solving this model. First, MDHVRPSTW is transferred into different groups according to the nearest principle, and then the initial route is constructed by the scanning algorithm (SA). Secondly, genetic operators are introduced, and crossover probability and mutation probability are adaptively adjusted in order to improve the global search ability of the algorithm. Moreover, the smooth mechanism is used to improve the performance of the ant colony optimization (ACO). Finally, the 3-opt strategy is used to improve the local search ability. The proposed IACO was tested on three new instances that were generated randomly. The experimental results show that IACO is superior to the other three existing algorithms in terms of convergence speed and solution quality. Thus, the proposed method is effective and feasible, and the proposed model is meaningful.展开更多
Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Fi...Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Firstly,the Golden Sine algorithm and a nonlinear weight factor optimization strategy were added in the discoverer position update stage of the SSA algorithm.Secondly,the Cauchy-Gaussian perturbation was applied to the optimal position of the SSA algorithm to improve its ability to jump out of local optima.Finally,the local search mechanism based on the mountain climbing method was incorporated into the local search stage of the SSA algorithm,improving its local search ability.To evaluate the effectiveness of the proposed algorithm,the Whale Algorithm,Gray Wolf Algorithm,Improved Gray Wolf Algorithm,Sparrow Search Algorithm,and MSSA Algorithm were employed to solve various test functions.The accuracy and convergence speed of each algorithm were then compared and analyzed.The results indicate that the MSSA algorithm has superior solving ability and stability compared to other algorithms.To further validate the enhanced algorithm’s capabilities for path planning,evacuation experiments were conducted using different maps featuring various obstacle types.Additionally,a multi-exit evacuation scenario was constructed according to the actual building environment of a teaching building.Both the sparrow search algorithm and MSSA algorithm were employed in the simulation experiment for multiexit evacuation path planning.The findings demonstrate that the MSSA algorithm outperforms the comparison algorithm,showcasing its greater advantages and higher application potential.展开更多
The large-scale development of electric vehicles(EVs)requires numerous charging stations to serve them,and the charging stations should be reasonably laid out and planned according to the charging demand of electric v...The large-scale development of electric vehicles(EVs)requires numerous charging stations to serve them,and the charging stations should be reasonably laid out and planned according to the charging demand of electric vehicles.Considering the costs of both operators and users,a site selection model for optimal layout planning of charging stations is constructed,and a queuing theory approach is used to determine the charging pile configuration to meet the charging demand in the planning area.To solve the difficulties of particle swarm global optimization search,the improved random drift particle swarm optimization(IRDPSO)and Voronoi diagram are used to jointly solve for the optimal layout of electric vehicles.The final arithmetic analysis verifies the feasibility and practicality of the model and algorithm,and the results show that the total social cost is minimized when the charging station is 9,the location of the charging station is close to the center of gravity and the layout is reasonable.展开更多
Using the traditional swarm intelligence algorithm to solve the cooperative path planning problem for multi-UAVs is easy to incur the problems of local optimization and a slow convergence rate.A cooperative path plann...Using the traditional swarm intelligence algorithm to solve the cooperative path planning problem for multi-UAVs is easy to incur the problems of local optimization and a slow convergence rate.A cooperative path planning method for multi-UAVs based on the improved sheep optimization is proposed to tackle these.Firstly,based on the three-dimensional planning space,a multi-UAV cooperative cost function model is established according to the path planning requirements,and an initial track set is constructed by combining multiple-population ideas.Then an improved sheep optimization is proposed and used to solve the path planning problem and obtain multiple cooperative paths.The simulation results show that the sheep optimization can meet the requirements of path planning and realize the cooperative path planning of multi-UAVs.Compared with grey wolf optimizer(GWO),improved gray wolf optimizer(IGWO),chaotic gray wolf optimizer(CGWO),differential evolution(DE)algorithm,and particle swam optimization(PSO),the convergence speed and search accuracy of the improved sheep optimization are significantly improved.展开更多
Resource allocation (RA) is the problem of allocating resources among various artifacts or business units to meet one or more expected goals, such a.s maximizing the profits, minimizing the costs, or achieving the b...Resource allocation (RA) is the problem of allocating resources among various artifacts or business units to meet one or more expected goals, such a.s maximizing the profits, minimizing the costs, or achieving the best qualities. A complex multiobjective RA is addressed, and a multiobjective mathematical model is used to find solutions efficiently. Then, all improved particie swarm algorithm (mO_PSO) is proposed combined with a new particle diversity controller policies and dissipation operation. Meanwhile, a modified Pareto methods used in PSO to deal with multiobjectives optimization is presented. The effectiveness of the provided algorithm is validated by its application to some illustrative example dealing with multiobjective RA problems and with the comparative experiment with other algorithm.展开更多
To slove the problems of constrained energy and unbalanced load of wireless sensor network(WSN)nodes,a multipath load balancing routing algorithm based on neighborhood subspace cooperation is proposed.The algorithm ad...To slove the problems of constrained energy and unbalanced load of wireless sensor network(WSN)nodes,a multipath load balancing routing algorithm based on neighborhood subspace cooperation is proposed.The algorithm adopts the improved particle swarm optimization(PSO)algorithm,takes the shortest distance and minimum energy consumption as optimization target and divides the nodes in one-hop neighborhood near the base station area into different regions.Furthermore,the algorithm designs a fitness function to find the best node in each region as a relay node and forward the data in parallel through the different paths of the relay nodes.The simulation results show that the proposed algorithm can reduce energy consumption and average end-to-end delay,balance network load and prolong network lifetime effectively.展开更多
文摘This paper focuses on wireless-powered communication systems,which are increasingly relevant in the Internet of Things(IoT)due to their ability to extend the operational lifetime of devices with limited energy.The main contribution of the paper is a novel approach to minimize the secrecy outage probability(SOP)in these systems.Minimizing SOP is crucial for maintaining the confidentiality and integrity of data,especially in situations where the transmission of sensitive data is critical.Our proposed method harnesses the power of an improved biogeography-based optimization(IBBO)to effectively train a recurrent neural network(RNN).The proposed IBBO introduces an innovative migration model.The core advantage of IBBO lies in its adeptness at maintaining equilibrium between exploration and exploitation.This is accomplished by integrating tactics such as advancing towards a random habitat,adopting the crossover operator from genetic algorithms(GA),and utilizing the global best(Gbest)operator from particle swarm optimization(PSO)into the IBBO framework.The IBBO demonstrates its efficacy by enabling the RNN to optimize the system parameters,resulting in significant outage probability reduction.Through comprehensive simulations,we showcase the superiority of the IBBO-RNN over existing approaches,highlighting its capability to achieve remarkable gains in SOP minimization.This paper compares nine methods for predicting outage probability in wireless-powered communications.The IBBO-RNN achieved the highest accuracy rate of 98.92%,showing a significant performance improvement.In contrast,the standard RNN recorded lower accuracy rates of 91.27%.The IBBO-RNN maintains lower SOP values across the entire signal-to-noise ratio(SNR)spectrum tested,suggesting that the method is highly effective at optimizing system parameters for improved secrecy even at lower SNRs.
基金supported by the Deanship of Scientific Research,at Imam Abdulrahman Bin Faisal University.Grant Number:2019-416-ASCS.
文摘Lung cancer is among the most frequent cancers in the world,with over one million deaths per year.Classification is required for lung cancer diagnosis and therapy to be effective,accurate,and reliable.Gene expression microarrays have made it possible to find genetic biomarkers for cancer diagnosis and prediction in a high-throughput manner.Machine Learning(ML)has been widely used to diagnose and classify lung cancer where the performance of ML methods is evaluated to identify the appropriate technique.Identifying and selecting the gene expression patterns can help in lung cancer diagnoses and classification.Normally,microarrays include several genes and may cause confusion or false prediction.Therefore,the Arithmetic Optimization Algorithm(AOA)is used to identify the optimal gene subset to reduce the number of selected genes.Which can allow the classifiers to yield the best performance for lung cancer classification.In addition,we proposed a modified version of AOA which can work effectively on the high dimensional dataset.In the modified AOA,the features are ranked by their weights and are used to initialize the AOA population.The exploitation process of AOA is then enhanced by developing a local search algorithm based on two neighborhood strategies.Finally,the efficiency of the proposed methods was evaluated on gene expression datasets related to Lung cancer using stratified 4-fold cross-validation.The method’s efficacy in selecting the optimal gene subset is underscored by its ability to maintain feature proportions between 10%to 25%.Moreover,the approach significantly enhances lung cancer prediction accuracy.For instance,Lung_Harvard1 achieved an accuracy of 97.5%,Lung_Harvard2 and Lung_Michigan datasets both achieved 100%,Lung_Adenocarcinoma obtained an accuracy of 88.2%,and Lung_Ontario achieved an accuracy of 87.5%.In conclusion,the results indicate the potential promise of the proposed modified AOA approach in classifying microarray cancer data.
文摘Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been widely employed to solve scheduling problems.However,HHO suffers from premature convergence when solving NP-hard problems.Therefore,this paper proposes an improved HHO algorithm(GNHHO)to solve the FJSP.GNHHO introduces an elitism strategy,a chaotic mechanism,a nonlinear escaping energy update strategy,and a Gaussian random walk strategy to prevent premature convergence.A flexible job shop scheduling model is constructed,and the static and dynamic FJSP is investigated to minimize the makespan.This paper chooses a two-segment encoding mode based on the job and the machine of the FJSP.To verify the effectiveness of GNHHO,this study tests it in 23 benchmark functions,10 standard job shop scheduling problems(JSPs),and 5 standard FJSPs.Besides,this study collects data from an agricultural company and uses the GNHHO algorithm to optimize the company’s FJSP.The optimized scheduling scheme demonstrates significant improvements in makespan,with an advancement of 28.16%for static scheduling and 35.63%for dynamic scheduling.Moreover,it achieves an average increase of 21.50%in the on-time order delivery rate.The results demonstrate that the performance of the GNHHO algorithm in solving FJSP is superior to some existing algorithms.
基金supported by the National Science and Technology Council under grants NSTC 112-2221-E-320-002the Buddhist Tzu Chi Medical Foundation in Taiwan under Grant TCMMP 112-02-02.
文摘In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible to unsafe events(such as falls)that can have disastrous consequences.However,automatically detecting falls fromvideo data is challenging,and automatic fall detection methods usually require large volumes of training data,which can be difficult to acquire.To address this problem,video kinematic data can be used as training data,thereby avoiding the requirement of creating a large fall data set.This study integrated an improved particle swarm optimization method into a double interactively recurrent fuzzy cerebellar model articulation controller model to develop a costeffective and accurate fall detection system.First,it obtained an optical flow(OF)trajectory diagram from image sequences by using the OF method,and it solved problems related to focal length and object offset by employing the discrete Fourier transform(DFT)algorithm.Second,this study developed the D-IRFCMAC model,which combines spatial and temporal(recurrent)information.Third,it designed an IPSO(Improved Particle Swarm Optimization)algorithm that effectively strengthens the exploratory capabilities of the proposed D-IRFCMAC(Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller)model in the global search space.The proposed approach outperforms existing state-of-the-art methods in terms of action recognition accuracy on the UR-Fall,UP-Fall,and PRECIS HAR data sets.The UCF11 dataset had an average accuracy of 93.13%,whereas the UCF101 dataset had an average accuracy of 92.19%.The UR-Fall dataset had an accuracy of 100%,the UP-Fall dataset had an accuracy of 99.25%,and the PRECIS HAR dataset had an accuracy of 99.07%.
基金supported by the Collabo R&D between Industry,Academy,and Research Institute(S3250534)funded by the Ministry of SMEs and Startups(MSS,Korea)the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.RS-2023-00218176)the Soonchunhyang University Research Fund.
文摘Human Action Recognition(HAR)in uncontrolled environments targets to recognition of different actions froma video.An effective HAR model can be employed for an application like human-computer interaction,health care,person tracking,and video surveillance.Machine Learning(ML)approaches,specifically,Convolutional Neural Network(CNN)models had beenwidely used and achieved impressive results through feature fusion.The accuracy and effectiveness of these models continue to be the biggest challenge in this field.In this article,a novel feature optimization algorithm,called improved Shark Smell Optimization(iSSO)is proposed to reduce the redundancy of extracted features.This proposed technique is inspired by the behavior ofwhite sharks,and howthey find the best prey in thewhole search space.The proposed iSSOalgorithmdivides the FeatureVector(FV)into subparts,where a search is conducted to find optimal local features fromeach subpart of FV.Once local optimal features are selected,a global search is conducted to further optimize these features.The proposed iSSO algorithm is employed on nine(9)selected CNN models.These CNN models are selected based on their top-1 and top-5 accuracy in ImageNet competition.To evaluate the model,two publicly available datasets UCF-Sports and Hollywood2 are selected.
基金supported by National Natural Science Foundation of China (Grant No. 51677058)。
文摘With the rapid development of new energy technologies, lithium batteries are widely used in the field of energy storage systems and electric vehicles. The accurate prediction for the state of health(SOH) has an important role in maintaining a safe and stable operation of lithium-ion batteries. To address the problems of uncertain battery discharge conditions and low SOH estimation accuracy in practical applications, this paper proposes a SOH estimation method based on constant-current battery charging section characteristics with a back-propagation neural network with an improved atom search optimization algorithm. A temperature characteristic, equal-time temperature variation(Dt_DT), is proposed by analyzing the temperature data of the battery charging section with the incremental capacity(IC) characteristics obtained from an IC analysis as an input to the data-driven prediction model. Testing and analysis of the proposed prediction model are carried out using publicly available datasets. Experimental results show that the maximum error of SOH estimation results for the proposed method in this paper is below 1.5%.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R281)Princess Nourah bint Abdulrahman University,Riyadh,SaudiArabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4331004DSR31).
文摘Applied linguistics means a wide range of actions which include addressing a few language-based problems or solving some language-based concerns.Emails stay in the leading positions for business as well as personal use.This popularity grabs the interest of individuals with malevolent inten-tions—phishing and spam email assaults.Email filtering mechanisms were developed incessantly to follow unwanted,malicious content advancement to protect the end-users.But prevailing solutions were focused on phishing email filtering and spam and whereas email labelling and analysis were not fully advanced.Thus,this study provides a solution related to email message body text automatic classification into phishing and email spam.This paper presents an Improved Fruitfly Optimization with Stacked Residual Recurrent Neural Network(IFFO-SRRNN)based on Applied Linguistics for Email Classification.The presented IFFO-SRRNN technique examines the intrinsic features of email for the identification of spam emails.At the preliminary level,the IFFO-SRRNN model follows the email pre-processing stage to make it compatible with further computation.Next,the SRRNN method can be useful in recognizing and classifying spam emails.As hyperparameters of the SRRNN model need to be effectually tuned,the IFFO algorithm can be utilized as a hyperparameter optimizer.To investigate the effectual email classification results of the IFFO-SRDL technique,a series of simulations were taken placed on public datasets,and the comparison outcomes highlight the enhancements of the IFFO-SRDL method over other recent approaches with an accuracy of 98.86%.
文摘Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded photonic crystals arranged in a structure composed of periodic and quasi-periodic sequences on a normalized scale.The effective dielectric function,which determines the absorption of the plasma,is subject to the basic parameters of the plasma,causing the absorption of the proposed absorber to be easily modulated by these parameters.Compared with other quasi-periodic sequences,the Octonacci sequence is superior both in relative bandwidth and absolute bandwidth.Under further optimization using IPSO with 14 parameters set to be optimized,the absorption characteristics of the proposed structure with different numbers of layers of the smallest structure unit N are shown and discussed.IPSO is also used to address angular insensitive nonreciprocal ultrawide bandwidth absorption,and the optimized result shows excellent unidirectional absorbability and angular insensitivity of the proposed structure.The impacts of the sequence number of quasi-periodic sequence M and collision frequency of plasma1ν1 to absorption in the angle domain and frequency domain are investigated.Additionally,the impedance match theory and the interference field theory are introduced to express the findings of the algorithm.
基金This research is supported by the Deputyship forResearch&Innovation,Ministry of Education in Saudi Arabia under Project Number(IFP-2022-35).
文摘To maximize energy profit with the participation of electricity,natural gas,and district heating networks in the day-ahead market,stochastic scheduling of energy hubs taking into account the uncertainty of photovoltaic and wind resources,has been carried out.This has been done using a new meta-heuristic algorithm,improved artificial rabbits optimization(IARO).In this study,the uncertainty of solar and wind energy sources is modeled using Hang’s two-point estimating method(TPEM).The IARO algorithm is applied to calculate the best capacity of hub energy equipment,such as solar and wind renewable energy sources,combined heat and power(CHP)systems,steamboilers,energy storage,and electric cars in the day-aheadmarket.The standard ARO algorithmis developed to mimic the foraging behavior of rabbits,and in this work,the algorithm’s effectiveness in avoiding premature convergence is improved by using the dystudynamic inertia weight technique.The proposed IARO-based scheduling framework’s performance is evaluated against that of traditional ARO,particle swarm optimization(PSO),and salp swarm algorithm(SSA).The findings show that,in comparison to previous approaches,the suggested meta-heuristic scheduling framework based on the IARO has increased energy profit in day-ahead electricity,gas,and heating markets by satisfying the operational and energy hub limitations.Additionally,the results show that TPEM approach dependability consideration decreased hub energy’s profit by 8.995%as compared to deterministic planning.
基金This work was supported by Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.,China(J2022114,Risk Assessment and Coordinated Operation of Coastal Wind Power Multi-Point Pooling Access System under Extreme Weather).
文摘The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved particle swarmoptimization is used to optimize the reactive power planning in wind farms.First,the power flow of offshore wind farms is modeled,analyzed and calculated.To improve the global search ability and local optimization ability of particle swarm optimization,the improved particle swarm optimization adopts the adaptive inertia weight and asynchronous learning factor.Taking the minimum active power loss of the offshore wind farms as the objective function,the installation location of the reactive power compensation device is compared according to the node voltage amplitude and the actual engineering needs.Finally,a reactive power optimizationmodel based on Static Var Compensator is established inMATLAB to consider the optimal compensation capacity,network loss,convergence speed and voltage amplitude enhancement effect of SVC.Comparing the compensation methods in several different locations,the compensation scheme with the best reactive power optimization effect is determined.Meanwhile,the optimization results of the standard particle swarm optimization and the improved particle swarm optimization are compared to verify the superiority of the proposed improved algorithm.
文摘This paper proposes a modified golden jackal optimization(IGJO)algorithm to solve the OCL(which stands for optimal cooling load)problem to minimize energy consumption.In this algorithm,many tools have been developed,such as numerical visualization,local field method,competitive selectionmethod,and iterative strategy.The IGJO algorithm is used to improve the research capabilities of the algorithm in terms of global tuning and rotation speed.In order to fully utilize the effectiveness of the proposed algorithm,three famous examples of OCL problems in basic ventilation systems were studied and compared with some previously published works.The results show that the IGJO algorithm can find solutions equal to or better than other methods.Underpinning these studies is the need to reduce energy consumption in air conditioning systems,which is a critical business and environmental decision.The Optimal Chiller Load(OCL)problem is well-known in the industry.It is the best method of operation for the refrigeration plant to satisfy the requirement of cooling.In order to solve the OCL problem,an improved Golden Jackal optimization algorithm(IGJO)was proposed.The IGJO algorithm consists of a number of parts to improve the global optimization and rotation speed.These studies are intended to address more effectively the issue of OCL,which results in energy savings in air-conditioning systems.The performance of the proposed IGJO algorithm is evaluated,and the results are compared with the results of three known OCL problems in the ventilation system.The results indicate that the IGJO method has the same or better optimization ability as other methods and can improve the energy efficiency of the system’s cold air.
文摘Internet of things(IOT)possess cultural,commercial and social effect in life in the future.The nodes which are participating in IOT network are basi-cally attracted by the cyber-attack targets.Attack and identification of anomalies in IoT infrastructure is a growing problem in the IoT domain.Machine Learning Based Ensemble Intrusion Detection(MLEID)method is applied in order to resolve the drawback by minimizing malicious actions in related botnet attacks on Message Queue Telemetry Transport(MQTT)and Hyper-Text Transfer Proto-col(HTTP)protocols.The proposed work has two significant contributions which are a selection of features and detection of attacks.New features are chosen from Improved Ant Colony Optimization(IACO)in the feature selection,and then the detection of attacks is carried out based on a combination of their possible proper-ties.The IACO approach is focused on defining the attacker’s important features against HTTP and MQTT.In the IACO algorithm,the constant factor is calculated against HTTP and MQTT based on the mean function for each element.Attack detection,the performance of several machine learning models are Distance Deci-sion Tree(DDT),Adaptive Neuro-Fuzzy Inference System(ANFIS)and Mahala-nobis Distance Support Vector Machine(MDSVM)were compared with predicting accurate attacks on the IoT network.The outcomes of these classifiers are combined into the ensemble model.The proposed MLEID strategy has effec-tively established malicious incidents.The UNSW-NB15 dataset is used to test the MLEID technique using data from simulated IoT sensors.Besides,the pro-posed MLEID technique has a greater detection rate and an inferior rate of false-positive compared to other conventional techniques.
基金The National Natural Science Foundation of China(No.61074147)the Natural Science Foundation of Guangdong Province(No.S2011010005059)+2 种基金the Foundation of Enterprise-University-Research Institute Cooperation from Guangdong Province and Ministry of Education of China(No.2012B091000171,2011B090400460)the Science and Technology Program of Guangdong Province(No.2012B050600028)the Science and Technology Program of Huadu District,Guangzhou(No.HD14ZD001)
文摘Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a mathematical model for multi-depot heterogeneous vehicle routing problem with soft time windows (MDHVRPSTW) is established. An improved ant colony optimization (IACO) is proposed for solving this model. First, MDHVRPSTW is transferred into different groups according to the nearest principle, and then the initial route is constructed by the scanning algorithm (SA). Secondly, genetic operators are introduced, and crossover probability and mutation probability are adaptively adjusted in order to improve the global search ability of the algorithm. Moreover, the smooth mechanism is used to improve the performance of the ant colony optimization (ACO). Finally, the 3-opt strategy is used to improve the local search ability. The proposed IACO was tested on three new instances that were generated randomly. The experimental results show that IACO is superior to the other three existing algorithms in terms of convergence speed and solution quality. Thus, the proposed method is effective and feasible, and the proposed model is meaningful.
基金supported by National Natural Science Foundation of China(71904006)Henan Province Key R&D Special Project(231111322200)+1 种基金the Science and Technology Research Plan of Henan Province(232102320043,232102320232,232102320046)the Natural Science Foundation of Henan(232300420317,232300420314).
文摘Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Firstly,the Golden Sine algorithm and a nonlinear weight factor optimization strategy were added in the discoverer position update stage of the SSA algorithm.Secondly,the Cauchy-Gaussian perturbation was applied to the optimal position of the SSA algorithm to improve its ability to jump out of local optima.Finally,the local search mechanism based on the mountain climbing method was incorporated into the local search stage of the SSA algorithm,improving its local search ability.To evaluate the effectiveness of the proposed algorithm,the Whale Algorithm,Gray Wolf Algorithm,Improved Gray Wolf Algorithm,Sparrow Search Algorithm,and MSSA Algorithm were employed to solve various test functions.The accuracy and convergence speed of each algorithm were then compared and analyzed.The results indicate that the MSSA algorithm has superior solving ability and stability compared to other algorithms.To further validate the enhanced algorithm’s capabilities for path planning,evacuation experiments were conducted using different maps featuring various obstacle types.Additionally,a multi-exit evacuation scenario was constructed according to the actual building environment of a teaching building.Both the sparrow search algorithm and MSSA algorithm were employed in the simulation experiment for multiexit evacuation path planning.The findings demonstrate that the MSSA algorithm outperforms the comparison algorithm,showcasing its greater advantages and higher application potential.
基金the National Social Science Foundation of China(No.18AJL014)。
文摘The large-scale development of electric vehicles(EVs)requires numerous charging stations to serve them,and the charging stations should be reasonably laid out and planned according to the charging demand of electric vehicles.Considering the costs of both operators and users,a site selection model for optimal layout planning of charging stations is constructed,and a queuing theory approach is used to determine the charging pile configuration to meet the charging demand in the planning area.To solve the difficulties of particle swarm global optimization search,the improved random drift particle swarm optimization(IRDPSO)and Voronoi diagram are used to jointly solve for the optimal layout of electric vehicles.The final arithmetic analysis verifies the feasibility and practicality of the model and algorithm,and the results show that the total social cost is minimized when the charging station is 9,the location of the charging station is close to the center of gravity and the layout is reasonable.
基金supported in part by the Fundamental Research Funds for the Central Universities(No.NZ18008)。
文摘Using the traditional swarm intelligence algorithm to solve the cooperative path planning problem for multi-UAVs is easy to incur the problems of local optimization and a slow convergence rate.A cooperative path planning method for multi-UAVs based on the improved sheep optimization is proposed to tackle these.Firstly,based on the three-dimensional planning space,a multi-UAV cooperative cost function model is established according to the path planning requirements,and an initial track set is constructed by combining multiple-population ideas.Then an improved sheep optimization is proposed and used to solve the path planning problem and obtain multiple cooperative paths.The simulation results show that the sheep optimization can meet the requirements of path planning and realize the cooperative path planning of multi-UAVs.Compared with grey wolf optimizer(GWO),improved gray wolf optimizer(IGWO),chaotic gray wolf optimizer(CGWO),differential evolution(DE)algorithm,and particle swam optimization(PSO),the convergence speed and search accuracy of the improved sheep optimization are significantly improved.
基金the National Natural Science Foundation of China (60573159)
文摘Resource allocation (RA) is the problem of allocating resources among various artifacts or business units to meet one or more expected goals, such a.s maximizing the profits, minimizing the costs, or achieving the best qualities. A complex multiobjective RA is addressed, and a multiobjective mathematical model is used to find solutions efficiently. Then, all improved particie swarm algorithm (mO_PSO) is proposed combined with a new particle diversity controller policies and dissipation operation. Meanwhile, a modified Pareto methods used in PSO to deal with multiobjectives optimization is presented. The effectiveness of the provided algorithm is validated by its application to some illustrative example dealing with multiobjective RA problems and with the comparative experiment with other algorithm.
基金National Natural Science Foundation of China(No.11461038)Science and Technology Plan of Gansu Province(No.144NKCA040)
文摘To slove the problems of constrained energy and unbalanced load of wireless sensor network(WSN)nodes,a multipath load balancing routing algorithm based on neighborhood subspace cooperation is proposed.The algorithm adopts the improved particle swarm optimization(PSO)algorithm,takes the shortest distance and minimum energy consumption as optimization target and divides the nodes in one-hop neighborhood near the base station area into different regions.Furthermore,the algorithm designs a fitness function to find the best node in each region as a relay node and forward the data in parallel through the different paths of the relay nodes.The simulation results show that the proposed algorithm can reduce energy consumption and average end-to-end delay,balance network load and prolong network lifetime effectively.