Proximal gradient descent and its accelerated version are resultful methods for solving the sum of smooth and non-smooth problems. When the smooth function can be represented as a sum of multiple functions, the stocha...Proximal gradient descent and its accelerated version are resultful methods for solving the sum of smooth and non-smooth problems. When the smooth function can be represented as a sum of multiple functions, the stochastic proximal gradient method performs well. However, research on its accelerated version remains unclear. This paper proposes a proximal stochastic accelerated gradient (PSAG) method to address problems involving a combination of smooth and non-smooth components, where the smooth part corresponds to the average of multiple block sums. Simultaneously, most of convergence analyses hold in expectation. To this end, under some mind conditions, we present an almost sure convergence of unbiased gradient estimation in the non-smooth setting. Moreover, we establish that the minimum of the squared gradient mapping norm arbitrarily converges to zero with probability one.展开更多
Motor drives form an essential part of the electric compressors,pumps,braking and actuation systems in the More-Electric Aircraft(MEA).In this paper,the application of Machine Learning(ML)in motor-drive design and opt...Motor drives form an essential part of the electric compressors,pumps,braking and actuation systems in the More-Electric Aircraft(MEA).In this paper,the application of Machine Learning(ML)in motor-drive design and optimization process is investigated.The general idea of using ML is to train surrogate models for the optimization.This training process is based on sample data collected from detailed simulation or experiment of motor drives.However,the Surrogate Role(SR)of ML may vary for different applications.This paper first introduces the principles of ML and then proposes two SRs(direct mapping approach and correction approach)of the ML in a motor-drive optimization process.Two different cases are given for the method comparison and validation of ML SRs.The first case is using the sample data from experiments to train the ML surrogate models.For the second case,the joint-simulation data is utilized for a multi-objective motor-drive optimization problem.It is found that both surrogate roles of ML can provide a good mapping model for the cases and in the second case,three feasible design schemes of ML are proposed and validated for the two SRs.Regarding the time consumption in optimizaiton,the proposed ML models can give one motor-drive design point up to 0.044 s while it takes more than 1.5 mins for the used simulation-based models.展开更多
文摘Proximal gradient descent and its accelerated version are resultful methods for solving the sum of smooth and non-smooth problems. When the smooth function can be represented as a sum of multiple functions, the stochastic proximal gradient method performs well. However, research on its accelerated version remains unclear. This paper proposes a proximal stochastic accelerated gradient (PSAG) method to address problems involving a combination of smooth and non-smooth components, where the smooth part corresponds to the average of multiple block sums. Simultaneously, most of convergence analyses hold in expectation. To this end, under some mind conditions, we present an almost sure convergence of unbiased gradient estimation in the non-smooth setting. Moreover, we establish that the minimum of the squared gradient mapping norm arbitrarily converges to zero with probability one.
基金funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and Innovation Programme No.807081。
文摘Motor drives form an essential part of the electric compressors,pumps,braking and actuation systems in the More-Electric Aircraft(MEA).In this paper,the application of Machine Learning(ML)in motor-drive design and optimization process is investigated.The general idea of using ML is to train surrogate models for the optimization.This training process is based on sample data collected from detailed simulation or experiment of motor drives.However,the Surrogate Role(SR)of ML may vary for different applications.This paper first introduces the principles of ML and then proposes two SRs(direct mapping approach and correction approach)of the ML in a motor-drive optimization process.Two different cases are given for the method comparison and validation of ML SRs.The first case is using the sample data from experiments to train the ML surrogate models.For the second case,the joint-simulation data is utilized for a multi-objective motor-drive optimization problem.It is found that both surrogate roles of ML can provide a good mapping model for the cases and in the second case,three feasible design schemes of ML are proposed and validated for the two SRs.Regarding the time consumption in optimizaiton,the proposed ML models can give one motor-drive design point up to 0.044 s while it takes more than 1.5 mins for the used simulation-based models.