期刊文献+
共找到3,717篇文章
< 1 2 186 >
每页显示 20 50 100
Effects of processing parameters on fabrication defects,microstructure and mechanical properties of additive manufactured Mg–Nd–Zn–Zr alloy by selective laser melting process
1
作者 Wenyu Xu Penghuai Fu +4 位作者 Nanqing Wang Lei Yang Liming Peng Juan Chen Wenjiang Ding 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2249-2266,共18页
Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to pr... Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to produce porous Mg degradable implants.However,the microstructure evolution and mechanical properties of the SLMed NZ30K Mg alloy were not yet studied systematically.Therefore,the fabrication defects,microstructure,and mechanical properties of the SLMed NZ30K alloy under different processing parameters were investigated.The results show that there are two types of fabrication defects in the SLMed NZ30K alloy,gas pores and unfused defects.With the increase of the laser energy density,the porosity sharply decreases to the minimum first and then slightly increases.The minimum porosity is 0.49±0.18%.While the microstructure varies from the large grains with lamellar structure inside under low laser energy density,to the large grains with lamellar structure inside&the equiaxed grains&the columnar grains under middle laser energy density,and further to the fine equiaxed grains&the columnar grains under high laser energy density.The lamellar structure in the large grain is a newly observed microstructure for the NZ30K Mg alloy.Higher laser energy density leads to finer grains,which enhance all the yield strength(YS),ultimate tensile strength(UTS)and elongation,and the best comprehensive mechanical properties obtained are YS of 266±2.1 MPa,UTS of 296±5.2 MPa,with an elongation of 4.9±0.68%.The SLMed NZ30K Mg alloy with a bimodal-grained structure consisting of fine equiaxed grains and coarser columnar grains has better elongation and a yield drop phenomenon. 展开更多
关键词 Selective laser melting Mg alloy processing parameter Lamellar structure Bimodal-grained structure
下载PDF
Optimization of chemistry and process parameters for control of intermetallic formation in Mg sludges
2
作者 Y.Fu G.G.Wang +4 位作者 A.Hu Y.Li K.B.Thacker J.P.Weiler H.Hu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1431-1448,共18页
Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM)... Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM),metal ingot producers and even die casters.The aim of this study was to minimize the intermetallic formation in Mg sludge via the optimization of the chemistry and process parameters.The Al8Mn5 intermetallic particles were identified by the microstructure analysis based on the Al and Mn ratio.The design of experiment(DOE)technique,Taguchi method,was employed to minimize the intermetallic formation in the sludge of Mg alloys with various chemical compositions of Al,Mn,Fe,and different process parameters,holding temperature and holding time.The sludge yield(SY)and intermetallic size(IS)was selected as two responses.The optimum combination of the levels in terms of minimizing the intermetallic formation were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,690℃ for the holding temperature and holding at 30 mins for the holding time,respectively.The best combination for smallest intermetallic size were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,630℃ for the holding temperature and holding at 60 mins for the holding time,respectively.Three groups of sludge factors,Chemical Sludge(CSF),Physical Sludge(PSF)and Comprehensive Sludge Factors(and CPSF)were established for prediction of sludge yields and intermetallic sizes in Al-containing Mg alloys.The CPSF with five independent variables including both chemical elements and process parameters gave high accuracy in prediction,as the prediction of the PSF with only the two processing parameters of the melt holding temperature and time showed a relatively large deviation from the experimental data.The Chemical Sludge Factor was primarily designed for small ingot producers and die casters with a limited melting and holding capacity,of which process parameters could be fixed easily.The Physical Sludge Factor could be used for mass production with a single type of Mg alloy,in which the chemistry fluctuation might be negligible.In large Mg casting suppliers with multiple melting and holding furnaces and a number of Mg alloys in production,the Comprehensive Sludge Factor should be implemented to diminish the sludge formation. 展开更多
关键词 Magnesium sludge Al-Mn intermetallic optimization Taguchi method Sludge factor Chemical composition process parameter
下载PDF
Process Parameters Optimization of Laser Cladding for HT200 with 316L Coating Based on Response Surface Method
3
作者 KONG Huaye ZHU Xijing +2 位作者 LI Zejun ZHANG Jinzhe LI Zuoxiu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1569-1579,共11页
In order to improve the sealing surface performance of gray cast iron gas gate valves and achieve precise molding control of the cladding layer,as well as to reveal the influence of laser cladding process parameters o... In order to improve the sealing surface performance of gray cast iron gas gate valves and achieve precise molding control of the cladding layer,as well as to reveal the influence of laser cladding process parameters on the morphology and structure of the cladding layer,we prepared the 316L coating on HT 200 by using Design-Expert software central composite design(CCD)based on response surface analysis.We built a regression prediction model and analyzed the ANOVA with the inspection results.With a target cladding layer width of 3.5 mm and height of 1.3 mm,the process parameters were optimized to obtain the best combination of process parameters.The microstructure,phases,and hardness variations of the cladding layer from experiments with optimal parameters were analyzed by the metallographic microscope,confocal microscope,and microhardness instrument.The experimental results indicate that laser power has a significant impact on the cladding layer width,followed by powder feed rate;scan speed has a significant impact on the cladding layer height,followed by powder feed rate.The HT200 substrate and 316L can metallurgically bond well,and the cladding layer structure consists of dendritic crystals,columnar crystals,and equiaxed crystals in sequence.The optimal process parameter combination satisfying the morphology requirements is laser power(A)of 1993 W,scan speed(B)of 8.949 mm/s,powder feed rate(C)of 1.408 r/min,with a maximum hardness of 1564.3 HV0.5,significantly higher than the hardness of the HT200 substrate. 展开更多
关键词 HT200 laser cladding 316L stainless steel response surface methodology process parameter optimization
下载PDF
Optimization and Characterization of Combined Degumming Process of Typha angustata L. Stem Fibers
4
作者 Sana Rezig Foued Khoffi +2 位作者 Mounir Jaouadi Asma Eloudiani Slah Msahli 《Journal of Renewable Materials》 EI CAS 2024年第6期1071-1086,共16页
Plant derived natural fibers have been widely investigated as alternatives to synthetic fibers in reinforcing polymers.Researchers over the years have explored many plant fibers using different extraction processes to... Plant derived natural fibers have been widely investigated as alternatives to synthetic fibers in reinforcing polymers.Researchers over the years have explored many plant fibers using different extraction processes to study their physical,chemical,and mechanical properties.In this context,the present study relates to the extraction,characterization,and optimization of Typha angustata L.stem fibers.For this purpose,desirability functions and response surface methodology were applied to simultaneously optimize the diameter(D),linear density(LD);yield(Y),lignin fraction(L),and tenacity(T)of Typha stem fibers.Typha stems have been subjected to both alkali(NaOH)and enzymatic(pectinex ultra-SPL)treatments.Three levels of process variables including enzyme concentration(10,15,and 20 ml/L)and treatment duration(10,15,and 20 days)were used to design the experiments according to the factorial design.Experimental results were examined by analysis of variance and fitted to second order polynomial model using multiple regression analysis.The Derringer’s desirability function released that the values of process variables generating optimized diameter,linear density,yield,lignin ratio and tenacity are 20 ml/L and 20 days for concentration of pectinex ultra-SPL enzyme and treatment duration,respectively.Confirmation was performed and high degree of correlation was found between the experimental and statistical values.Moreover,the morphological structure has been investigated by the scanning electron microscope,showing a crenelated structure of ultimate fiber bundles of cellulose composing the Typha fiber.Compared to Typha stem non-treated fibers(TSNTF),Typha stem combined treated fibers(TSCTF),brings to improve mechanical properties.This change in mechanical properties is affected by modifying the fiber structure showing alpha cellulose of(66.86%)and lignin ratio of(10.83%)with a crystallinity index of(58.47%). 展开更多
关键词 Typha angustata L.stems fibers combined treatment optimization process desirability function chemical and physical properties morphological structure
下载PDF
High temperature deformation behavior and optimization of hot compression process parameters in TC11 titanium alloy with coarse lamellar original microstructure 被引量:4
5
作者 鲁世强 李鑫 +2 位作者 王克鲁 董显娟 傅铭旺 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第2期353-360,共8页
The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the tem... The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the temperature range of 950-1100 ℃ and the strain rate range of 0.001-10 s-1. The processing maps at different strains were then constructed based on the dynamic materials model, and the hot compression process parameters and deformation mechanism were optimized and analyzed, respectively. The results show that the processing maps exhibit two domains with a high efficiency of power dissipation and a flow instability domain with a less efficiency of power dissipation. The types of domains were characterized by convergence and divergence of the efficiency of power dissipation, respectively. The convergent domain in a+fl phase field is at the temperature of 950-990 ℃ and the strain rate of 0.001-0.01 s^-1, which correspond to a better hot compression process window of α+β phase field. The peak of efficiency of power dissipation in α+β phase field is at 950 ℃ and 0.001 s 1, which correspond to the best hot compression process parameters of α+β phase field. The convergent domain in β phase field is at the temperature of 1020-1080 ℃ and the strain rate of 0.001-0.1 s^-l, which correspond to a better hot compression process window of β phase field. The peak of efficiency of power dissipation in ℃ phase field occurs at 1050 ℃ over the strain rates from 0.001 s^-1 to 0.01 s^-1, which correspond to the best hot compression process parameters of ,8 phase field. The divergence domain occurs at the strain rates above 0.5 s^-1 and in all the tested temperature range, which correspond to flow instability that is manifested as flow localization and indicated by the flow softening phenomenon in stress-- strain curves. The deformation mechanisms of the optimized hot compression process windows in a+β and β phase fields are identified to be spheroidizing and dynamic recrystallizing controlled by self-diffusion mechanism, respectively. The microstructure observation of the deformed specimens in different domains matches very well with the optimized results. 展开更多
关键词 titanium alloy coarse lamellar microstructure high temperature deformation behavior processing map hot compression process parameter optimization
下载PDF
Multi-objective optimization of process parameters for ultra-narrow gap welding based on Universal Kriging and NSGA Ⅱ
6
作者 马生明 张爱华 +3 位作者 顾建军 漆宇晟 马晶 王平 《China Welding》 CAS 2023年第3期28-35,共8页
The successful confinement of the arc by the flux band depends on the welding process parameters for achieving single-pass,multi-layer, and ultra-narrow gap welding. The sidewall fusion depth, the width of the heat-af... The successful confinement of the arc by the flux band depends on the welding process parameters for achieving single-pass,multi-layer, and ultra-narrow gap welding. The sidewall fusion depth, the width of the heat-affected zone, and the line energy are utilized as comprehensive indications of the quality of the welded joint. In order to achieve well fusion and reduce the heat input to the base metal.Three welding process characteristics were chosen as the primary determinants, including welding voltage, welding speed, and wire feeding speed. The metamodel of the welding quality index was built by the orthogonal experiments. The metamodel and NSGA-Ⅱ(Non-dominated sorting genetic algorithm Ⅱ) were combined to develop a multi-objective optimization model of ultra-narrow gap welding process parameters. The results showed that the optimized welding process parameters can increase the sidewall fusion depth, reduce the width of the heataffected zone and the line energy, and to some extent improve the overall quality of the ultra-narrow gap welding process. 展开更多
关键词 ultra-narrow gap optimization of process parameters non-dominated sorting genetic algorithm II the sidewall fusion depth
下载PDF
Study on the Physical Process and Seismogenic Mechanism of the Yangbi MS 6.4 Earthquake in Dali,Yunnan Province
7
作者 DUAN Mengqiao ZHAO Cuiping ZHOU Lianqing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第S01期22-23,共2页
The Ms 6.4 earthquake occurred on May 21,2021 in Yangbi County,Dali Prefecture,Yunnan Province,which was the largest earthquake after the 2014 Jinggu Ms 6.6 earthquake,in western Yunnan.After the earthquake,the rapid ... The Ms 6.4 earthquake occurred on May 21,2021 in Yangbi County,Dali Prefecture,Yunnan Province,which was the largest earthquake after the 2014 Jinggu Ms 6.6 earthquake,in western Yunnan.After the earthquake,the rapid field investigation and earthquake relocation reveal that there was no obvious surface rupture and the earthquake did not occur on pre-existing active fault,but on a buried fault on the west side of Weixi–Qiaohou–Weishan fault zone in the eastern boundary of Baoshan sub-block.Significant foreshocks appeared three days before the earthquake.These phenomena aroused scholars'intensive attention.What the physical process and seismogenic mechanism of the Yangbi Ms 6.4 earthquake are revealed by the foreshocks and aftershocks?These scientific questions need to be solved urgently. 展开更多
关键词 The Yangbi Ms 6.4 earthquake 3D velocity structure microseismic detection B-VALUE source parameters nuleation process seismogenic mechanism
下载PDF
Cookie Baking Process Optimization and Quality Analysis Based on Food 3D Printing
8
作者 Liu Chenghai Li Jingyi +2 位作者 Wu Chunsheng Zhao Xinglong Zheng Xianzhe 《Journal of Northeast Agricultural University(English Edition)》 CAS 2024年第1期61-73,共13页
In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the in... In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the influences of baking process parameters, such as baking time, surface heating temperature and bottom heating temperature, on the quality of the cookie were studied to optimize the baking process parameters. The results showed that the baking process parameters had obvious effects on the texture, color, deformation, moisture content, and temperature of the cookie. All of the roasting surface heating temperature, bottom heating temperature and baking time had positive influences on the hardness, crunchiness, crispiness, and the total color difference(ΔE) of the cookie. When the heating temperatures of the surfac and bottom increased, the diameter and thickness deformation rate of the cookie increased. However,with the extension of baking time, the diameter and thickness deformation rate of the cookie first increased and then decreased. With the surface heating temperature of 180 ℃, the bottom heating temperature of 150 ℃, and baking time of 15 min, the cookie was crisp and moderate with moderate deformation and uniform color. There was no burnt phenomenon with the desired quality. Research results provided a theoretical basis for cookie manufactory based on food 3D printing technology. 展开更多
关键词 food 3D printing baking process COOKIE quality analysis optimization of process parameter
下载PDF
Optimization of Processing Parameters of Power Spinning for Bushing Based on Neural Network and Genetic Algorithms 被引量:3
9
作者 Junsheng Zhao Yuantong Gu Zhigang Feng 《Journal of Beijing Institute of Technology》 EI CAS 2019年第3期606-616,共11页
A neural network model of key process parameters and forming quality is developed based on training samples which are obtained from the orthogonal experiment and the finite element numerical simulation. Optimization o... A neural network model of key process parameters and forming quality is developed based on training samples which are obtained from the orthogonal experiment and the finite element numerical simulation. Optimization of the process parameters is conducted using the genetic algorithm (GA). The experimental results have shown that a surface model of the neural network can describe the nonlinear implicit relationship between the parameters of the power spinning process:the wall margin and amount of expansion. It has been found that the process of determining spinning technological parameters can be accelerated using the optimization method developed based on the BP neural network and the genetic algorithm used for the process parameters of power spinning formation. It is undoubtedly beneficial towards engineering applications. 展开更多
关键词 power SPINNING process parameters optimization BP NEURAL network GENETIC algorithms (GA) response surface methodology (RSM)
下载PDF
Integrated Optimization of Structure and Control Parameters for the Height Control System of a Vertical Spindle Cotton Picker 被引量:1
10
作者 Xingzheng Chen Congbo Li +2 位作者 Rui Hu Ning Liu Chi Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第6期405-416,共12页
Vertical picking method is a predominate method used to harvest cotton crop.However,a vertical picking method may cause spindle bending of the cotton picker if spindles collide with stones on the cotton field.Thus,how... Vertical picking method is a predominate method used to harvest cotton crop.However,a vertical picking method may cause spindle bending of the cotton picker if spindles collide with stones on the cotton field.Thus,how to realize a precise height control of the cotton picker is a crucial issue to be solved.The objective of this study is to design a height control system to avoid the collision.To design it,the mathematical models are established first.Then a multi-objective optimization model represented by structure parameters and control parameters is proposed to take the pressure of chamber without piston,response time and displacement error of the height control system as the opti-mization objectives.An integrated optimization approach that combines optimization via simulation,particle swarm optimization and simulated annealing is proposed to solve the model.Simulation and experimental test results show that the proposed integrated optimization approach can not only reduce the pressure of chamber without piston,but also decrease the response time and displacement error of the height control system. 展开更多
关键词 Cotton picker Height control system structure parameters Control parameters Integrated optimization
下载PDF
Optimization of AZ80 magnesium alloy squeeze cast process parameters using morphological matrix 被引量:6
11
作者 郭志宏 侯华 +1 位作者 赵宇宏 屈淑维 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第2期411-418,共8页
The squeeze cast process parameters of AZ80 magnesium alloy were optimized by morphological matrix. Experiments were conducted by varying squeeze pressure, die pre-heat temperature and pressure duration using L9(33)... The squeeze cast process parameters of AZ80 magnesium alloy were optimized by morphological matrix. Experiments were conducted by varying squeeze pressure, die pre-heat temperature and pressure duration using L9(33) orthogonal array of Taguchi method. In Taguchi method, a 3-level orthogonal array was used to determine the signal/noise ratio. Analysis of variance was used to determine the most significant process parameters affecting the mechanical properties. Mechanical properties such as ultimate tensile strength, elongation and hardness of the components were ascertained using multi variable linear regression analysis. Optimal squeeze cast process parameters were obtained. 展开更多
关键词 AZ80 magnesium alloy squeeze cast process parameters morphological matrix optimization
下载PDF
Machine tool selection based on fuzzy evaluation and optimization of cutting parameters
12
作者 张保平 关世玺 +2 位作者 张博 王斌 田甜 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2015年第4期384-389,共6页
The paper analyzes the factors influencing machine tool selection. By using fuzzy mathematics theory, we establish a theorietical model for optimal machine tool selection considering geometric features, clamping size,... The paper analyzes the factors influencing machine tool selection. By using fuzzy mathematics theory, we establish a theorietical model for optimal machine tool selection considering geometric features, clamping size, machining range, machining precision and surface roughness. By means of fuzzy comprehensive evaluation method, the membership degree of machine tool selection and the largest comprehensive evaluation index are determined. Then the reasonably automatic selection of machine tool is realized in the generative computer aided process planning (CAPP) system. Finally, the finite element model based on ABAQUS is established and the cutting process of machine tool is simulated. According to the theoretical and empirical cutting parameters and the curve of surface residual stress, the optimal cutting parameters can be determined. 展开更多
关键词 fuzzy evaluation machine selection computer aided process planning(CAPP) parameter optimization
下载PDF
Review of Design of Process Parameters for Squeeze Casting
13
作者 Jianxin Deng Bin Xie +1 位作者 Dongdong You Haibin Huang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期22-35,共14页
Squeeze casting(SC)is an advanced net manufacturing process with many advantages for which the quality and properties of the manufactured parts depend strongly on the process parameters.Unfortunately,a universal effic... Squeeze casting(SC)is an advanced net manufacturing process with many advantages for which the quality and properties of the manufactured parts depend strongly on the process parameters.Unfortunately,a universal efficient method for the determination of optimal process parameters is still unavailable.In view of the shortcomings and development needs of the current research methods for the setting of SC process parameters,by consulting and analyzing the recent research literature on SC process parameters and using the CiteSpace literature analysis software,manual reading and statistical analysis,the current state and characteristics of the research methods used for the determination of SC process parameters are summarized.The literature data show that the number of pub-lications in the literature related to the design of SC process parameters generally trends upward albeit with signifi-cant fluctuations.Analysis of the research focus shows that both“mechanical properties”and“microstructure”are the two main subjects in the studies of SC process parameters.With regard to materials,aluminum alloys have been extensively studied.Five methods have been used to obtain SC process parameters:Physical experiments,numeri-cal simulation,modeling optimization,formula calculation,and the use of empirical values.Physical experiments are the main research methods.The main methods for designing SC process parameters are divided into three categories:Fully experimental methods,optimization methods that involve modeling based on experimental data,and theoreti-cal calculation methods that involve establishing an analytical formula.The research characteristics and shortcomings of each method were analyzed.Numerical simulations and model-based optimization have become the new required methods.Considering the development needs and data-driven trends of the SC process,suggestions for the develop-ment of SC process parameter research have been proposed. 展开更多
关键词 Squeeze casting process parameter design process parameter optimization DATA-DRIVEN Neural network Research method analysis Literature analysis CITESPACE
下载PDF
Simulation Research on the Effect of Spreading Process Parameters on the Quality of Lunar Regolith Powder Bed in Additive Manufacturing
14
作者 Qi Tian Bing Luo 《Journal of Electronic Research and Application》 2023年第1期16-24,共9页
Lunar surface additive manufacturing with lunar regolith is a key step in in-situ resource utilization.The powder spreading process is the key process,which has a major impact on the quality of the powder bed and the ... Lunar surface additive manufacturing with lunar regolith is a key step in in-situ resource utilization.The powder spreading process is the key process,which has a major impact on the quality of the powder bed and the precision of molded parts.In this study,the discrete element method(DEM)was adopted to simulate the powder spreading process with a roller.The three powder bed quality indicators,including the molding layer offset,voidage fraction,and surface roughness,were established.Besides,the influence of the three process parameters,which are roller’s translational speed,rotational speed,and powder spreading layer thickness on the powder bed quality indicators was also analyzed.The results show that with the reduction of the powder spreading layer thickness and the increase of the rotational speed,the offset increased significantly;when the translational speed increased,the offset first increased and then decreased,which resulted in an extreme value;with the increase of the layer thickness and the decrease of the translational speed,the values for voidage fraction and surface roughness significantly reduced.The powder bed quality indicators were adopted as the optimization objective,and the multi-objective parameter optimization was carried out.The predicted optimal powder spreading parameters and powder bed quality indicators were then obtained.Moreover,the optimal values were then verified.This study can provide informative guidance for in-situ manufacturing at the moon in future deep space exploration missions. 展开更多
关键词 Lunar regolith additive manufacturing Numerical simulation of powder spreading process Discrete element method Powder spreading process parameters parameters optimization
下载PDF
Multi-objective optimization of process parametersduring low-pressure die casting of AZ91Dmagnesium alloy wheel castings 被引量:10
15
作者 Chen Zhang Yu Fu +1 位作者 Han Wang Hai Hao 《China Foundry》 SCIE 2018年第5期327-332,共6页
Multi-objective optimization has been increasingly applied in engineering where optimal decisions need to be made in the presence of trade-offs between two or more objectives. Minimizing the volume of shrinkage porosi... Multi-objective optimization has been increasingly applied in engineering where optimal decisions need to be made in the presence of trade-offs between two or more objectives. Minimizing the volume of shrinkage porosity, while reducing the secondary dendritic arm spacing of a wheel casting during low-pressure die casting(LPDC) process, was taken as an example of such problem. A commercial simulation software Pro CASTTM was applied to simulate the filling and solidification processes. Additionally, a program for integrating the optimization algorithm with numerical simulation was developed based on SiPESC. By setting pouring temperature and filling pressure as design variables, shrinkage porosity and secondary dendritic arm spacing as objective variables, the multi-objective optimization of minimum volume of shrinkage porosity and secondary dendritic arm spacing was achieved. The optimal combination of AZ91 D wheel casting was: pouring temperature 689 °C and filling pressure 6.5 kPa. The predicted values decreased from 4.1% to 2.1% for shrinkage porosity, and 88.5 μm to 81.2 μm for the secondary dendritic arm spacing. The optimal results proved the feasibility of the developed program in multi-objective optimization. 展开更多
关键词 magnesium alloy multi-objective optimization process parameters shrinkage porosity secondary DENDRITIC arm SPACING
下载PDF
Significance-based optimization of processing parameters for thin-walled aluminum alloy tube NC bending with small bending radius 被引量:13
16
作者 XU Jie YANG He +1 位作者 LI Heng ZHAN Mei 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第1期147-156,共10页
Thin-walled aluminum alloy tube numerical control (NC) bending with small bending radius is a complex process with multi-factor coupling effects and multi-die constraints. A significance-based optimization method of... Thin-walled aluminum alloy tube numerical control (NC) bending with small bending radius is a complex process with multi-factor coupling effects and multi-die constraints. A significance-based optimization method of the parameters was proposed based on the finite element (FE) simulation, and the significance analysis of the processing parameters on the forming quality in terms of the maximum wall thinning ratio and the maximum cross section distortion degree was implemented using the fractional factorial design. The optimum value of the significant parameter, the clearance between the tube and the wiper die, was obtained, and the values of the other parameters, including the friction coefficients and the clearances between the tube and the dies, the mandrel extension length and the boost velocity were estimated. The results are applied to aluminum alloy tube NC bending d50 mm×1 mm×75 mm and d70 mm×1.5 mm×105 mm (initial tube outside diameter D0 × initial tube wall thickness t0 × bending radius R), and qualified tubes are produced. 展开更多
关键词 thin-walled aluminum alloy tube optimization finite element (FE) numerical control bending processing parameters significance analysis small bending radius
下载PDF
Optimization of investment casting process parameters to reduce warpage of turbine blade platform in DD6 alloy 被引量:4
17
作者 Jia-wei Tian Kun Bu +5 位作者 Jin-hui Song Guo-liang Tian Fei Qiu Dan-qing Zhao Zong-li Jin Yang Li 《China Foundry》 SCIE 2017年第6期469-477,共9页
The large warping deformation at platform of turbine blade directly affects the forming precision. In the present research, equivalent warping deformation was firstly presented to describe the extent of deformation at... The large warping deformation at platform of turbine blade directly affects the forming precision. In the present research, equivalent warping deformation was firstly presented to describe the extent of deformation at platform. To optimize the process parameters during investment casting to minimize the warping deformation of the platform, based on simulation with Pro CAST, the single factor method, orthogonal test, neural network and genetic algorithm were subsequently used to analyze the influence of pouring temperature, shell mold preheating temperature, furnace temperature and withdrawal velocity on dimensional accuracy of the platform of superalloyDD6 turbine blade. The accuracy of investment casting simulation was verified by measurement of platform at blade casting. The simulation results with the optimal process parameters illustrate that the equivalent warping deformation was dramatically reduced by 21.8% from 0.232295 mm to 0.181698 mm. 展开更多
关键词 PROCAST optimization of process parameters warping deformation of platform orthogonal test genetic algorithm BP-neural network
下载PDF
Optimization of Synthesis of Spherical Lignosulphonate Resin and Its Structure Characterization 被引量:3
18
作者 范娟 詹怀宇 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第3期407-410,共4页
Calcium lignosulphonate was used to synthesize a spherical lignosulphonate resin in a cheap and non-toxic disperse medium by reversed phase suspension polymerization. The process conditions were optimized by orthog... Calcium lignosulphonate was used to synthesize a spherical lignosulphonate resin in a cheap and non-toxic disperse medium by reversed phase suspension polymerization. The process conditions were optimized by orthogonal experiments. Under .the optxmal conditxons (T=95 ℃, CHCl= 3 mol·L^-1, mHCHO: mCLS=7%, WCLS=50%), globulation took about 20 min and the product was featured with excellent spherical shape, narrow particle size range, 61.20% of water retention capacity, 0.83 mmol·ml^- 1 of total volume exchange capacity and 3.46 mmol·g^- 1 of total exchange capacity. The results of Scanning Electron Micrograph and Scanning Probe Micrograph indicate that spherical lignosulphonate resin has a rugged surface with porous microstructure in the gel skeleton. The average pore size of dry samples was determined to be 10.46 nm. by the BET method. 展开更多
关键词 sphencal lignosulphonate resin process optimization structure characterization
下载PDF
OPTIMIZATION OF PROCESSING PARAMETERS DURING ISM PROCESS OF Ti-15-3 被引量:1
19
作者 Guo, Jingjie Su, Yanqing +2 位作者 Liu, Yuan Ren, Zhijiang Jia, Jun 《中国有色金属学会会刊:英文版》 EI CSCD 1999年第1期19-21,21+23+20+22,共5页
INTRODUCTIONTheISMisoneofthebestmeltingprocesformeltingreactivealoys,suchastitaniumalloys,Ti3Albasedaloys,... INTRODUCTIONTheISMisoneofthebestmeltingprocesformeltingreactivealoys,suchastitaniumalloys,Ti3Albasedaloys,TiAlbasedaloysan... 展开更多
关键词 induction SKULL MELTING Ti 15 3 optimization of processING parameters
下载PDF
Substructure design optimization and nonlinear responses control analysis of the mega-sub controlled structural system (MSCSS) under earthquake action 被引量:1
20
作者 Mustapha Abdulhadi Zhang Xun′an +1 位作者 Buqiao Fan Muhammad Moman 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第3期687-704,共18页
The newly proposed mega sub-controlled structure system(MSCSS)and related studies have drawn the attention of civil engineers for practice in improving the performance and enhancing the structural effectiveness of meg... The newly proposed mega sub-controlled structure system(MSCSS)and related studies have drawn the attention of civil engineers for practice in improving the performance and enhancing the structural effectiveness of mega frame structures.However,there is still a need for improvement to its basic structural arrangement.In this project,an advanced,reasonable arrangement of mega sub-controlled structure models,composed of three mega stories with different numbers and arrangements of substructures,are designed to investigate the control performance of the models and obtain the optimal model configuration(model with minimum acceleration and displacement responses)under strong earthquake excitation.In addition,the dynamic parameters that affect the performance effectiveness of the optimal model of MSCSS are studied and discussed.The area of the relative stiffness ratio RD,with different mass ratio MR,within which the acceleration and displacement of the optimal model of MSCSS reaches its optimum(minimum)value is considered as an optimum region.It serves as a useful tool in practical engineering design.The study demonstrates that the proposed MSCSS configuration can efficiently control the displacement and acceleration of high rise buildings.In addition,some analytical guidelines are provided for selecting the control parameters of the structure. 展开更多
关键词 mega sub-controlled structure system(MSCSS) optimal model viscous damper dynamic parameters control effectiveness response control rubber bearing
下载PDF
上一页 1 2 186 下一页 到第
使用帮助 返回顶部