Taking the ratio of heat transfer area to net power and heat recovery efficiency into account, a multi-objective mathematical model was developed for organic Rankine cycle (ORC). Working fluids considered were R123,...Taking the ratio of heat transfer area to net power and heat recovery efficiency into account, a multi-objective mathematical model was developed for organic Rankine cycle (ORC). Working fluids considered were R123, R134a, R141b, R227ea and R245fa. Under the given conditions, the parameters including evaporating and condensing pressures, working fluid and cooling water velocities were optimized by simulated annealing algorithm. The results show that the optimal evaporating pressure increases with the heat source temperature increasing. Compared with other working fluids, R123 is the best choice for the temperature range of 100--180℃ and R141 b shows better performance when the temperature is higher than 180 ℃. Economic characteristic of system decreases rapidly with the decrease of heat source temperature. ORC system is uneconomical for the heat source temperature lower than 100℃.展开更多
In order to select the appropriate working fluids and optimize parameters for medium-temperature geothermally-powered organic Rankine cycle(ORC), R245 fa is mixed with R601 a at geothermal water temperature of 110 ℃....In order to select the appropriate working fluids and optimize parameters for medium-temperature geothermally-powered organic Rankine cycle(ORC), R245 fa is mixed with R601 a at geothermal water temperature of 110 ℃. Based on thermodynamics, the characteristics of mixture and its influence on the performance of ORC under different evaporating temperatures and composition proportions are analyzed. Results show that the zeotropic mixture R245fa/R601a(0.4/0.6) has the highest performance. When the evaporating temperature reaches 67 ℃, the outlet temperature of geothermal water is 61 ℃, the net power output is the highest and the thermal efficiency is about 9%.展开更多
In the present study, a dual-pressure organic Rankine cycle (DORC) driven by geothermal hot water for electricity production is developed, investigated and optimized from the energy, exergy and exergoeconomic viewpoin...In the present study, a dual-pressure organic Rankine cycle (DORC) driven by geothermal hot water for electricity production is developed, investigated and optimized from the energy, exergy and exergoeconomic viewpoint. A parametric study is conducted to determine the effect of high-stage pressure<span><span><span style="font-family:;" "=""><span></span><span><span> </span>and low-stage pressure</span><span></span><span><span> </span>variation on the system thermodynamic and exergoeconomic performance. The DORC is further optimized to obtain maximum exergy efficiency optimized design (EEOD case) and minimum product cost</span></span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">optimized design (PCOD case). The exergy efficiency and unit cost of power produced for the optimization of EEOD case and PCOD case are 33.03% and 3.059 cent/kWh, which are 0.3% and 17.4% improvement over base case, respectively. The PCOD case proved to be the best, with respect to minimum unit cost of power produced and net power output over the base case and EEOD case.展开更多
A comparison on subcritical and transcritical organic Rankine cycle(ORC) system with a heat source of 110 ℃ geothermal water was presented. The net power output, thermal and exergy efficiencies and the products of ...A comparison on subcritical and transcritical organic Rankine cycle(ORC) system with a heat source of 110 ℃ geothermal water was presented. The net power output, thermal and exergy efficiencies and the products of the heat transfer coefficient(U) and the total heat exchange area(A)(UA values) were calculated for parametric optimization. Nine candidate working fluids were investigated and compared. Under the given conditions, transcritical systems have higher net power outputs than subcritical ones. The highest net power output of transcritical systems is 18.63 k W obtained by R218, and that of subcritical systems is 13.57 k W obtained by R600 a. Moreover, with the increase of evaporating pressure, the thermal and exergy efficiencies of transcritical systems increase at first and then decrease, but the efficiencies of subcritical ones increase. As a result, the efficiencies of transcritical systems cannot always outperform those of the subcritical ones. However, the subcritical systems have lower minimum UA values and lower expansion ratios than the transcritical ones at the maximum net power output. In addition, the transcritical cycles have higher expansion ratios than the subcritical ones at their maximum net power output.展开更多
Exhaust waste heat recovery system based on organic Rankine cycle(ORC)has been considered as an effective method to achieve energy conservation and emissions reduction of engine.The performance of adiesel engine with ...Exhaust waste heat recovery system based on organic Rankine cycle(ORC)has been considered as an effective method to achieve energy conservation and emissions reduction of engine.The performance of adiesel engine with an on-board ORC exhaust heat recovery system was evaluated through simulations in this study.The combined system was optimized through controlling the exhaust gas mass flow rate entering the ORC system.The models of the engine with ORC system were developed in GT-suite and Simulink environment.The validation results showed high accuracy of the models.The performance of the system recovering heat from different exhaust gas mass flow rates was evaluated.The comparative analysis of the performance between the optimized and un-optimized system was also presented.The results indicated that the exhaust gas mass flow rate had significant effects on the system performance.Integration with the onboard ORC system could effectively improve the engine power performance.The power output of the engineORC combined system with optimization had further improvement,and the maximum improvement could reach up to 1.16 kW.展开更多
为利用非共沸工质在蒸发器内“温度滑移”的优势,避免在冷凝器内“组分迁移”的不利影响。构建了非共沸工质分离压缩再混合有机朗肯循环系统(ORC with separation,compression,and remixing,SCRM-ORC)。采用分凝器将非共沸混合工质分离...为利用非共沸工质在蒸发器内“温度滑移”的优势,避免在冷凝器内“组分迁移”的不利影响。构建了非共沸工质分离压缩再混合有机朗肯循环系统(ORC with separation,compression,and remixing,SCRM-ORC)。采用分凝器将非共沸混合工质分离成2种纯工质,分别进入气液热交换器两空间进行气液换热,再对纯工质压缩、混合再利用。以120℃地热水为热源,R134a/R245fa为工质,建立热力、经济与环境性能模型,分析R134a质量分数对系统综合性能的影响,并与采用R134a的乏气压缩再循环ORC系统(compression recycling,CR-ORC)性能进行对比。采用遗传算法进行多目标优化,揭示系统最优性能与工况参数。结果表明:与CR-ORC系统相比,非共沸工质SCRM-ORC系统可有效降低冷凝热的释放量,在R134a质量分数较低时提高冷凝热回收利用量,同时具有较好的综合性能。将分凝器与气液热交换器看作整体与CR-ORC系统中新型冷凝器相比,二者[火用]损失之和与投资成本之和小于CR-ORC系统中冷凝器的。在R134a质量分数为0.2181时,系统综合性能最优,此时净输出功为3412.1kW,投资回收期为2.237年,年当量CO_(2)减排量为4520.6×10^(3)kg。展开更多
Low temperature exhaust gases carrying large amount of waste heat are released by steel-making process and many other industries, Organic Rankine Cycles (ORCs) are proven to be the most promising technology to re- c...Low temperature exhaust gases carrying large amount of waste heat are released by steel-making process and many other industries, Organic Rankine Cycles (ORCs) are proven to be the most promising technology to re- cover the low-temperature waste heat, thereby to get more financial benefits for these industries. The exergy analysis of ORC units driven by low-temperature exhaust gas waste heat and charged with dry and isentropic fluid was per- formed, and an intuitive approach with simple impressions was developed to calculate the performances of the ORC unit. Parameter optimization was conducted with turbine inlet temperature simplified as the variable and exergy effi- ciency or power output as the objective function by means of Penalty Function and Golden Section Searching algo- rithm based on the formulation of the optimization problem. The power generated by the optimized ORC unit can be nearly as twice as that generated by a non-optimized ORC unit. In addition, cycle parametric analysis was performed to examine the effects of thermodynamic parameters on the cycle performances such as thermal efficiency and exergy efficiency. It is proven that performance of ORC unit is mainly affected by the thermodynamic property of working fluid, the waste heat temperature, the pinch point temperature of the evaporator, the specific heat capacity of the heat carrier and the turbine inlet temperature under a given environment temperature.展开更多
基金Project(2009GK2009) supported by Science and Technology Department Funds of Hunan Province,ChinaProject(08C26224302178) supported by Innovation Fund for Technology Based Firms of China
文摘Taking the ratio of heat transfer area to net power and heat recovery efficiency into account, a multi-objective mathematical model was developed for organic Rankine cycle (ORC). Working fluids considered were R123, R134a, R141b, R227ea and R245fa. Under the given conditions, the parameters including evaporating and condensing pressures, working fluid and cooling water velocities were optimized by simulated annealing algorithm. The results show that the optimal evaporating pressure increases with the heat source temperature increasing. Compared with other working fluids, R123 is the best choice for the temperature range of 100--180℃ and R141 b shows better performance when the temperature is higher than 180 ℃. Economic characteristic of system decreases rapidly with the decrease of heat source temperature. ORC system is uneconomical for the heat source temperature lower than 100℃.
基金Supported by the National High Technology Research and Development Program of China("863" Program,No.2012AA053001)
文摘In order to select the appropriate working fluids and optimize parameters for medium-temperature geothermally-powered organic Rankine cycle(ORC), R245 fa is mixed with R601 a at geothermal water temperature of 110 ℃. Based on thermodynamics, the characteristics of mixture and its influence on the performance of ORC under different evaporating temperatures and composition proportions are analyzed. Results show that the zeotropic mixture R245fa/R601a(0.4/0.6) has the highest performance. When the evaporating temperature reaches 67 ℃, the outlet temperature of geothermal water is 61 ℃, the net power output is the highest and the thermal efficiency is about 9%.
文摘In the present study, a dual-pressure organic Rankine cycle (DORC) driven by geothermal hot water for electricity production is developed, investigated and optimized from the energy, exergy and exergoeconomic viewpoint. A parametric study is conducted to determine the effect of high-stage pressure<span><span><span style="font-family:;" "=""><span></span><span><span> </span>and low-stage pressure</span><span></span><span><span> </span>variation on the system thermodynamic and exergoeconomic performance. The DORC is further optimized to obtain maximum exergy efficiency optimized design (EEOD case) and minimum product cost</span></span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">optimized design (PCOD case). The exergy efficiency and unit cost of power produced for the optimization of EEOD case and PCOD case are 33.03% and 3.059 cent/kWh, which are 0.3% and 17.4% improvement over base case, respectively. The PCOD case proved to be the best, with respect to minimum unit cost of power produced and net power output over the base case and EEOD case.
基金Project(2012AA053001) supported by the National High Technology Research and Development Program of China
文摘A comparison on subcritical and transcritical organic Rankine cycle(ORC) system with a heat source of 110 ℃ geothermal water was presented. The net power output, thermal and exergy efficiencies and the products of the heat transfer coefficient(U) and the total heat exchange area(A)(UA values) were calculated for parametric optimization. Nine candidate working fluids were investigated and compared. Under the given conditions, transcritical systems have higher net power outputs than subcritical ones. The highest net power output of transcritical systems is 18.63 k W obtained by R218, and that of subcritical systems is 13.57 k W obtained by R600 a. Moreover, with the increase of evaporating pressure, the thermal and exergy efficiencies of transcritical systems increase at first and then decrease, but the efficiencies of subcritical ones increase. As a result, the efficiencies of transcritical systems cannot always outperform those of the subcritical ones. However, the subcritical systems have lower minimum UA values and lower expansion ratios than the transcritical ones at the maximum net power output. In addition, the transcritical cycles have higher expansion ratios than the subcritical ones at their maximum net power output.
文摘Exhaust waste heat recovery system based on organic Rankine cycle(ORC)has been considered as an effective method to achieve energy conservation and emissions reduction of engine.The performance of adiesel engine with an on-board ORC exhaust heat recovery system was evaluated through simulations in this study.The combined system was optimized through controlling the exhaust gas mass flow rate entering the ORC system.The models of the engine with ORC system were developed in GT-suite and Simulink environment.The validation results showed high accuracy of the models.The performance of the system recovering heat from different exhaust gas mass flow rates was evaluated.The comparative analysis of the performance between the optimized and un-optimized system was also presented.The results indicated that the exhaust gas mass flow rate had significant effects on the system performance.Integration with the onboard ORC system could effectively improve the engine power performance.The power output of the engineORC combined system with optimization had further improvement,and the maximum improvement could reach up to 1.16 kW.
文摘为利用非共沸工质在蒸发器内“温度滑移”的优势,避免在冷凝器内“组分迁移”的不利影响。构建了非共沸工质分离压缩再混合有机朗肯循环系统(ORC with separation,compression,and remixing,SCRM-ORC)。采用分凝器将非共沸混合工质分离成2种纯工质,分别进入气液热交换器两空间进行气液换热,再对纯工质压缩、混合再利用。以120℃地热水为热源,R134a/R245fa为工质,建立热力、经济与环境性能模型,分析R134a质量分数对系统综合性能的影响,并与采用R134a的乏气压缩再循环ORC系统(compression recycling,CR-ORC)性能进行对比。采用遗传算法进行多目标优化,揭示系统最优性能与工况参数。结果表明:与CR-ORC系统相比,非共沸工质SCRM-ORC系统可有效降低冷凝热的释放量,在R134a质量分数较低时提高冷凝热回收利用量,同时具有较好的综合性能。将分凝器与气液热交换器看作整体与CR-ORC系统中新型冷凝器相比,二者[火用]损失之和与投资成本之和小于CR-ORC系统中冷凝器的。在R134a质量分数为0.2181时,系统综合性能最优,此时净输出功为3412.1kW,投资回收期为2.237年,年当量CO_(2)减排量为4520.6×10^(3)kg。
基金Sponsored by National Natural Science Foundation of China (5106602,U0937604)Natural Science Foundation of Yunnan Provincial (2008KA002,2008CD001)
文摘Low temperature exhaust gases carrying large amount of waste heat are released by steel-making process and many other industries, Organic Rankine Cycles (ORCs) are proven to be the most promising technology to re- cover the low-temperature waste heat, thereby to get more financial benefits for these industries. The exergy analysis of ORC units driven by low-temperature exhaust gas waste heat and charged with dry and isentropic fluid was per- formed, and an intuitive approach with simple impressions was developed to calculate the performances of the ORC unit. Parameter optimization was conducted with turbine inlet temperature simplified as the variable and exergy effi- ciency or power output as the objective function by means of Penalty Function and Golden Section Searching algo- rithm based on the formulation of the optimization problem. The power generated by the optimized ORC unit can be nearly as twice as that generated by a non-optimized ORC unit. In addition, cycle parametric analysis was performed to examine the effects of thermodynamic parameters on the cycle performances such as thermal efficiency and exergy efficiency. It is proven that performance of ORC unit is mainly affected by the thermodynamic property of working fluid, the waste heat temperature, the pinch point temperature of the evaporator, the specific heat capacity of the heat carrier and the turbine inlet temperature under a given environment temperature.