Optimization algorithms are applied to resolve the second-order pileup(SOP)issue from high counting rates occurring in digital alpha spectroscopy.These are antlion optimizer(ALO)and particle swarm optimization(PSO)alg...Optimization algorithms are applied to resolve the second-order pileup(SOP)issue from high counting rates occurring in digital alpha spectroscopy.These are antlion optimizer(ALO)and particle swarm optimization(PSO)algorithms.Both optimization algorithms are coupled to one of the three proposed peak finder algorithms.Three custom time-domain algorithms are proposed for retrieving SOP peaks,namely peak seek,slope tangent,and fast array algorithms.In addition,an average combinational algorithm is applied.The time occurrence of the retrieved peaks is tested for an elimination of illusive pulses.Conventional methods are inaccurate and timeconsuming.ALO and PSO optimizations are used for the localization of retrieved peaks.Optimum cost values that achieve the best fitness values are demonstrated.Thus,the optimum positions of the detected peak heights are achieved.Evaluation metrics of the optimized algorithms and their influences on the retrieved peaks parameters are established.Comparisons among such algorithms are investigated,and the algorithms are inspected in terms of their computational time and average error.The peak seek algorithm achieves the lowest average computational error for pulse parameters(amplitude and position).However,the fast array algorithm introduces the largest average error for pulse parameters.In addition,the peak seek algorithm coupled with an ALO or PSO algorithm is observed to realize a better performance in terms of the optimum cost and computational time.By contrast,the performance of the peak seek recovery algorithm is improved using the PSO.Furthermore,the computational time of the peak optimization using the PSO is much better than that of the ALO algorithm.As a final conclusion,the accuracy of the peaks detected by the PSO surpasses that for the peaks detected by the ALO.The implemented peak retrieval algorithms are validated through a comparison with experimental results from previous studies.The proposed algorithms achieve a notable precision for compensation of the SOP peaks within the alpha ray spectroscopy at a high counting rate.展开更多
The main task of system reliability design is to find the best layout of components to maximize reliability or to minimize cost. A reliability optimization approach using neural networks to identify the choice of comp...The main task of system reliability design is to find the best layout of components to maximize reliability or to minimize cost. A reliability optimization approach using neural networks to identify the choice of components in series-parallel systems with multiple constraints is presented in this paper. The McCullochPittes neural network model is used in this approach. The design methods of the neural network construction and its energy function are described in detail. The optimal solutions of the reliability problem are obtained by minimizing the energy function of the neural networks. Simulation results show the reliability optimization approach using neural networks can find the optimal or near-optimal solutions for most of the problems in a relatively short time, it is a useful alternative for system reliability design of complex systems.展开更多
Objective To optimize experimental parameters for the photosensitization of 5-aminolevulinic acid (ALA) in promyelocytic leukemia cell HL60 and compare them with normal human peripheral blood mononuclear cell (PBMC). ...Objective To optimize experimental parameters for the photosensitization of 5-aminolevulinic acid (ALA) in promyelocytic leukemia cell HL60 and compare them with normal human peripheral blood mononuclear cell (PBMC). Methods ALA incubation time, wavelength applied to irradiate, concentration of ALA incubated, irradiation fluence may modulate the effect of 5-aminolevulinic acid based Photodynamic Therapy (ALA-PDT).The high-pressure mercury lamps of 400W served as light source, the interference filter of 410nm, 432nm, 545nm, 577nm were used to select the specific wavelength. Fluorescence microscope was used to detect the fluorescence intensity and location of protoporphyrin IX (PpIX) endogenously produced by ALA. MTT assay was used to measure the survival of cell. Flow cytometry with ANNEXIN V FITC kit (contains annexin V FITC, binding buffer and PI) was used to detect the mode of cell death. Results ① 1mmol/L ALA incubated 1×105/mL HL60 cell line for 4 hours, the maximum fluorescence of ALA induced PpIX was detected in cytomembrane. ② Irradiated with 410nm for 14.4J/cm2 can result in the minimum survivability of HL60 cell. ③ The main mode of HL60 cell death caused by ALA-PDT is necrosis. Conclusion ALA for 1mmol/L, 4 hours for dark incubation time, 410nm for irradiation wavelength, 14.4J/cm2 for irradiation fluence were the optimal parameters to selectively eliminate promyelocytic leukemia cell HL60 by ALA based PDT. The photosensitization of ALA based PDT caused the necrosis of HL60 cell, so it could be used for inactivation of certain leukemia cells.展开更多
Performance models provide insightful perspectives to predict performance and to propose optimization guidance.Although there has been much researches,pinpointing bottlenecks of various memory access patterns and reac...Performance models provide insightful perspectives to predict performance and to propose optimization guidance.Although there has been much researches,pinpointing bottlenecks of various memory access patterns and reaching high accurate prediction of both regular and irregular programs on various hardware configurations are still not trivial.This work proposes a novel model called process-RAM-feedback(PRF)to quantify the overhead of computation and data transmission time on general-purpose multi-core processors.The PRF model predicts the cost of instruction for singlecore by a directed acyclic graph(DAG)and the transmission time of memory access between each memory hierarchy through a newly designed cache simulator.By using performance modeling and feedback optimization method,this paper uses PRF model to analyze and optimize convolution,sparse matrix-vector multiplication and sn-sweep as case study for covering with typical regular kernel to irregular and data dependence.Through the PRF model,it obtains optimization guidance with various sparsity structures,algorithm designs,and instruction sets support on different data sizes.展开更多
Recently Guo Tao proposed a stochastic search algorithm in his PhD thesis for solving function optimization problems. He combined the subspace search method (a general multi-parent recombination strategy) with the pop...Recently Guo Tao proposed a stochastic search algorithm in his PhD thesis for solving function optimization problems. He combined the subspace search method (a general multi-parent recombination strategy) with the population hill-climbing method. The former keeps a global search for overall situation, and the latter keeps the convergence of the algorithm. Guo's algorithm has many advantages, such as the simplicity of its structure, the higher accuracy of its results, the wide range of its applications, and the robustness of its use. In this paper a preliminary theoretical analysis of the algorithm is given and some numerical experiments has been done by using Guo's algorithm for demonstrating the theoretical results. Three asynchronous parallel evolutionary algorithms with different granularities for MIMD machines are designed by parallelizing Guo's Algorithm.展开更多
Synthetic zeolite Na-A was prepared from Egyptian kaolinite by hydrothermal treatment to be used as an adsorbent for removal of phosphate from aqueous solutions. The present work deals with the application of response...Synthetic zeolite Na-A was prepared from Egyptian kaolinite by hydrothermal treatment to be used as an adsorbent for removal of phosphate from aqueous solutions. The present work deals with the application of response surface methodology (RSM) and central composite rotatable design (CCRD) for modeling and optimization of the effect of four operating variables on the removal of phosphate from aqueous solution using zeolite Na-A. The parameters were contact time (0.5 - 6 h), phosphate anion concentrations (10 - 30 mg/L), adsorbent dosage (0.05 - 0.1 g), and solution pH (2 - 7). A total of 26 tests were conducted using the synthetic zeolite Na-A according to the conditions predicted by the statistical design. In order to optimize removal of phosphate by synthetic zeolite Na-A, mathematical equations of quadratic polynomial model were derived from Design Expert Software (Version 6.0.5). Such equations are second-order response functions which represent the amount of phosphate adsorbed (mg/g) and the removal efficiency (%) and are expressed as functions of the selected operating parameters. Predicted values were found to be in good agreement and correlation with experimental results (R2 values of 0.918 and 0.905 for amount of phosphate adsorbed and removal efficiency of it, respectively). To understand the effect of the four variables for optimal removal of phosphate using zeolite Na-A, the models were presented as cube and 3-D response surface graphs. RSM and CCRD could efficiently be applied for the modeling of removing of phosphate from aqueous solution using zeolite Na-A and it is efficient way for obtaining information in a short time and with the fewer number of experiments.展开更多
This paper studies the solution technique to solve the DRAMA spares allocation optimization problem. DRAMA model is an analytic spare optimization model of a multi-item, multi-location, and two-echelon inventory syste...This paper studies the solution technique to solve the DRAMA spares allocation optimization problem. DRAMA model is an analytic spare optimization model of a multi-item, multi-location, and two-echelon inventory system. The computation of its system spares availability is much complicated. The objective function and constraint functions of DRAMA model could be written as the separable forms. A new bound heuristic algorithm has been presented by improving the bound heuristic algorithm for solving the reliability redundancy optimization problem (BHA in short). With the results, the proposed algorithm has been found to be more economical and effective than BHA to obtain the solutions of large DRAMA model. The new algorithm could be used to solve reliability redundancy optimization problems with the separable forms.展开更多
In the paper, a new mixed algorithm combined with schemes of nonmonotone line search, the systems of linear equations for higher order modification and sequential quadratic programming for constrained optimizations is...In the paper, a new mixed algorithm combined with schemes of nonmonotone line search, the systems of linear equations for higher order modification and sequential quadratic programming for constrained optimizations is presented. Under some weaker assumptions,without strict complementary condition, the algorithm is globally and superlinearly convergent.展开更多
Based on the non-equilibrium thermodynamics and energy and exergy analyses,a thermodynamic model of two-stage thermoelectric(TE)cooler(TTEC)driven by two-stage TE generator(TTEG)(TTEG-TTEC)combined TE device is establ...Based on the non-equilibrium thermodynamics and energy and exergy analyses,a thermodynamic model of two-stage thermoelectric(TE)cooler(TTEC)driven by two-stage TE generator(TTEG)(TTEG-TTEC)combined TE device is established with involving Thomson effect by fitting method of variable physical parameters of TE materials.Taking total number of TE elements as constraint,influences of number distributions of TE elements on three device performance indictors,that is,cooling load,maximum COP and maximum exergetic efficiency,are analyzed.Three number distributions of TE elements are optimized with three maximum performance indictors as the objectives,respectively.Influences of hot-junction temperature of TTEG and coldjunction temperature of TTEC on optimization results are analyzed,and difference between optimization results corresponding to three performance indicators are studied.Optimal performance intervals and optimal variable intervals are provided.Influences of Thomson effect on three general performance indicators,three optimal performance indicators and optimal variables are comparatively discussed.Thomson effect reduces three general performance indicators and three optimal performance indicators of device.When hot-and cold-junction temperatures of TTEG and TTEC are 450,305,325 and 295 K,respectively,Thomson effect reduced maximum cooling load,maximum COP and maximum exergetic efficiency from 9.528 W,9.043×10^(-2)and2.552%to 6.651 W,6.286×10^(-2)and 1.752%,respectively.展开更多
Maisotsenko cycle(M-cycle)has been combined with some cooling and power cycles,and behaves important thermodynamic advantage.Finite-time thermodynamics(FTT)is applied to establish three endoreversible models of M-Atki...Maisotsenko cycle(M-cycle)has been combined with some cooling and power cycles,and behaves important thermodynamic advantage.Finite-time thermodynamics(FTT)is applied to establish three endoreversible models of M-Atkinson,M-Dual and M-Miller cycles.They are performed based on models of endoreversible Atkinson,Dual and Miller cycles by combing FTT model with M-cycle concept.Power output(POW)and thermal efficiency(TEF)of those M-cycles are studied and optimized by numerical calculations.The maximum power output(MPO)and the corresponding pressure ratio and TEF,the maximum TEF and the corresponding pressure ratio and POW,as well as optimal ranges of pressure ratio are obtained.Effects of mass flow rate of circulating water injection,initial cycle temperature and maximum cycle temperature on cycle POW,TEF and optimal pressure ratio range are analyzed.The optimal performances of the three M-cycles are compared with those of traditional Atkinson,Dual and Miller cycles under the same conditions.The results show that for the three M-cycles,end temperature of adiabatic expansion process of M-cycle is less than that of the corresponding traditional cycle,POW and TEF at arbitrary pressure ratio of M-cycle are much higher than those of the corresponding traditional cycle,and performance characteristics of M-cycles are superior to those of the corresponding traditional cycles.展开更多
Separable multi-block convex optimization problem appears in many mathematical and engineering fields.In the first part of this paper,we propose an inertial proximal ADMM to solve a linearly constrained separable mult...Separable multi-block convex optimization problem appears in many mathematical and engineering fields.In the first part of this paper,we propose an inertial proximal ADMM to solve a linearly constrained separable multi-block convex optimization problem,and we show that the proposed inertial proximal ADMM has global convergence under mild assumptions on the regularization matrices.Affine phase retrieval arises in holography,data separation and phaseless sampling,and it is also considered as a nonhomogeneous version of phase retrieval,which has received considerable attention in recent years.Inspired by convex relaxation of vector sparsity and matrix rank in compressive sensing and by phase lifting in phase retrieval,in the second part of this paper,we introduce a compressive affine phase retrieval via lifting approach to connect affine phase retrieval with multi-block convex optimization,and then based on the proposed inertial proximal ADMM for 3-block convex optimization,we propose an algorithm to recover sparse real signals from their(noisy)affine quadratic measurements.Our numerical simulations show that the proposed algorithm has satisfactory performance for affine phase retrieval of sparse real signals.展开更多
Benefiting from the development of Federated Learning(FL)and distributed communication systems,large-scale intelligent applications become possible.Distributed devices not only provide adequate training data,but also ...Benefiting from the development of Federated Learning(FL)and distributed communication systems,large-scale intelligent applications become possible.Distributed devices not only provide adequate training data,but also cause privacy leakage and energy consumption.How to optimize the energy consumption in distributed communication systems,while ensuring the privacy of users and model accuracy,has become an urgent challenge.In this paper,we define the FL as a 3-layer architecture including users,agents and server.In order to find a balance among model training accuracy,privacy-preserving effect,and energy consumption,we design the training process of FL as game models.We use an extensive game tree to analyze the key elements that influence the players’decisions in the single game,and then find the incentive mechanism that meet the social norms through the repeated game.The experimental results show that the Nash equilibrium we obtained satisfies the laws of reality,and the proposed incentive mechanism can also promote users to submit high-quality data in FL.Following the multiple rounds of play,the incentive mechanism can help all players find the optimal strategies for energy,privacy,and accuracy of FL in distributed communication systems.展开更多
Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not...Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not been studied for Mg alloys.In this study,WE43 Mg alloy bulk cubes,porous scaffolds,and thin walls with layer thicknesses of 10,20,30,and 40μm were fabricated.The required laser energy input increased with increasing layer thickness and was different for the bulk cubes and porous scaffolds.Porosity tended to occur at the connection joints in porous scaffolds for LT40 and could be eliminated by reducing the laser energy input.For thin wall parts,a large overhang angle or a small wall thickness resulted in porosity when a large layer thicknesses was used,and the porosity disappeared by reducing the layer thickness or laser energy input.A deeper keyhole penetration was found in all occasions with porosity,explaining the influence of layer thickness,geometrical structure,and laser energy input on the porosity.All the samples achieved a high fusion quality with a relative density of over 99.5%using the optimized laser energy input.The increased layer thickness resulted to more precipitation phases,finer grain sizes and decreased grain texture.With the similar high fusion quality,the tensile strength and elongation of bulk samples were significantly improved from 257 MPa and 1.41%with the 10μm layer to 287 MPa and 15.12%with the 40μm layer,in accordance with the microstructural change.The effect of layer thickness on the compressive properties of porous scaffolds was limited.However,the corrosion rate of bulk samples accelerated with increasing the layer thickness,mainly attributed to the increased number of precipitation phases.展开更多
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ...Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.展开更多
Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components direct...Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components directly affects manufacturing,operation and storage performances of the umbilical.For the multi-layer cross-sectional layout design of the umbilical,a quantifiable multi-objective optimization model is established according to the operation and storage requirements.Considering the manufacturing factors,the multi-layering strategy based on contact point identification is introduced for a great number of functional components.Then,the GA-GLM global optimization algorithm is proposed combining the genetic algorithm and the generalized multiplier method,and the selection operator of the genetic algorithm is improved based on the steepest descent method.Genetic algorithm is used to find the optimal solution in the global space,which can converge from any initial layout to the feasible layout solution.The feasible layout solution is taken as the initial value of the generalized multiplier method for fast and accurate solution.Finally,taking umbilicals with a great number of components as examples,the results show that the cross-sectional performance of the umbilical obtained by optimization algorithm is better and the solution efficiency is higher.Meanwhile,the multi-layering strategy is effective and feasible.The design method proposed in this paper can quickly obtain the optimal multi-layer cross-sectional layout,which replaces the manual design,and provides useful reference and guidance for the umbilical industry.展开更多
This research presents a novel nature-inspired metaheuristic algorithm called Frilled Lizard Optimization(FLO),which emulates the unique hunting behavior of frilled lizards in their natural habitat.FLO draws its inspi...This research presents a novel nature-inspired metaheuristic algorithm called Frilled Lizard Optimization(FLO),which emulates the unique hunting behavior of frilled lizards in their natural habitat.FLO draws its inspiration from the sit-and-wait hunting strategy of these lizards.The algorithm’s core principles are meticulously detailed and mathematically structured into two distinct phases:(i)an exploration phase,which mimics the lizard’s sudden attack on its prey,and(ii)an exploitation phase,which simulates the lizard’s retreat to the treetops after feeding.To assess FLO’s efficacy in addressing optimization problems,its performance is rigorously tested on fifty-two standard benchmark functions.These functions include unimodal,high-dimensional multimodal,and fixed-dimensional multimodal functions,as well as the challenging CEC 2017 test suite.FLO’s performance is benchmarked against twelve established metaheuristic algorithms,providing a comprehensive comparative analysis.The simulation results demonstrate that FLO excels in both exploration and exploitation,effectively balancing these two critical aspects throughout the search process.This balanced approach enables FLO to outperform several competing algorithms in numerous test cases.Additionally,FLO is applied to twenty-two constrained optimization problems from the CEC 2011 test suite and four complex engineering design problems,further validating its robustness and versatility in solving real-world optimization challenges.Overall,the study highlights FLO’s superior performance and its potential as a powerful tool for tackling a wide range of optimization problems.展开更多
Dear Editor,This letter explores optimal formation control for a network of unmanned surface vessels(USVs).By designing an individual objective function for each USV,the optimal formation problem is transformed into a...Dear Editor,This letter explores optimal formation control for a network of unmanned surface vessels(USVs).By designing an individual objective function for each USV,the optimal formation problem is transformed into a noncooperative game.Under this game theoretic framework,the optimal formation is achieved by seeking the Nash equilibrium of the regularized game.A modular structure consisting of a distributed Nash equilibrium seeker and a regulator is proposed.展开更多
In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocol...In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocolumn configuration.However,this approach frequently necessitates tedious enumeration procedures,resulting in a considerable computational burden.To surmount this formidable challenge,the present study introduces an innovative remedy:The proposition of a superstructure that encompasses both single-column and multiple two-column configurations.Additionally,a simultaneous optimization algorithm is applied to optimize both the process parameters and heat integration structures of the twocolumn configurations.The effectiveness of this approach is demonstrated through a case study focusing on industrial organosilicon separation.The results underscore that the superstructure methodology not only substantially mitigates computational time compared to exhaustive enumeration but also furnishes solutions that exhibit comparable performance.展开更多
Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics t...Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise.展开更多
In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hy...In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hybrid predictive model named GWO-RF.This model combines the grey wolf optimization(GWO)algorithm with the random forest(RF)technique to predict the D_(80)value,a critical parameter in evaluating rock fragmentation quality.The study is conducted using a dataset from Sarcheshmeh Copper Mine,employing six different swarm sizes for the GWO-RF hybrid model construction.The GWO-RF model’s hyperparameters are systematically optimized within established bounds,and its performance is rigorously evaluated using multiple evaluation metrics.The results show that the GWO-RF hybrid model has higher predictive skills,exceeding traditional models in terms of accuracy.Furthermore,the interpretability of the GWO-RF model is enhanced through the utilization of SHapley Additive exPlanations(SHAP)values.The insights gained from this research contribute to optimizing blasting operations and rock fragmentation outcomes in the mining industry.展开更多
文摘Optimization algorithms are applied to resolve the second-order pileup(SOP)issue from high counting rates occurring in digital alpha spectroscopy.These are antlion optimizer(ALO)and particle swarm optimization(PSO)algorithms.Both optimization algorithms are coupled to one of the three proposed peak finder algorithms.Three custom time-domain algorithms are proposed for retrieving SOP peaks,namely peak seek,slope tangent,and fast array algorithms.In addition,an average combinational algorithm is applied.The time occurrence of the retrieved peaks is tested for an elimination of illusive pulses.Conventional methods are inaccurate and timeconsuming.ALO and PSO optimizations are used for the localization of retrieved peaks.Optimum cost values that achieve the best fitness values are demonstrated.Thus,the optimum positions of the detected peak heights are achieved.Evaluation metrics of the optimized algorithms and their influences on the retrieved peaks parameters are established.Comparisons among such algorithms are investigated,and the algorithms are inspected in terms of their computational time and average error.The peak seek algorithm achieves the lowest average computational error for pulse parameters(amplitude and position).However,the fast array algorithm introduces the largest average error for pulse parameters.In addition,the peak seek algorithm coupled with an ALO or PSO algorithm is observed to realize a better performance in terms of the optimum cost and computational time.By contrast,the performance of the peak seek recovery algorithm is improved using the PSO.Furthermore,the computational time of the peak optimization using the PSO is much better than that of the ALO algorithm.As a final conclusion,the accuracy of the peaks detected by the PSO surpasses that for the peaks detected by the ALO.The implemented peak retrieval algorithms are validated through a comparison with experimental results from previous studies.The proposed algorithms achieve a notable precision for compensation of the SOP peaks within the alpha ray spectroscopy at a high counting rate.
基金Supported by the National Natural Science Foundation of China (60006002) and Natural Science Research Project of Education Depart-ment of Guangdong Province of China (02019)
文摘The main task of system reliability design is to find the best layout of components to maximize reliability or to minimize cost. A reliability optimization approach using neural networks to identify the choice of components in series-parallel systems with multiple constraints is presented in this paper. The McCullochPittes neural network model is used in this approach. The design methods of the neural network construction and its energy function are described in detail. The optimal solutions of the reliability problem are obtained by minimizing the energy function of the neural networks. Simulation results show the reliability optimization approach using neural networks can find the optimal or near-optimal solutions for most of the problems in a relatively short time, it is a useful alternative for system reliability design of complex systems.
文摘Objective To optimize experimental parameters for the photosensitization of 5-aminolevulinic acid (ALA) in promyelocytic leukemia cell HL60 and compare them with normal human peripheral blood mononuclear cell (PBMC). Methods ALA incubation time, wavelength applied to irradiate, concentration of ALA incubated, irradiation fluence may modulate the effect of 5-aminolevulinic acid based Photodynamic Therapy (ALA-PDT).The high-pressure mercury lamps of 400W served as light source, the interference filter of 410nm, 432nm, 545nm, 577nm were used to select the specific wavelength. Fluorescence microscope was used to detect the fluorescence intensity and location of protoporphyrin IX (PpIX) endogenously produced by ALA. MTT assay was used to measure the survival of cell. Flow cytometry with ANNEXIN V FITC kit (contains annexin V FITC, binding buffer and PI) was used to detect the mode of cell death. Results ① 1mmol/L ALA incubated 1×105/mL HL60 cell line for 4 hours, the maximum fluorescence of ALA induced PpIX was detected in cytomembrane. ② Irradiated with 410nm for 14.4J/cm2 can result in the minimum survivability of HL60 cell. ③ The main mode of HL60 cell death caused by ALA-PDT is necrosis. Conclusion ALA for 1mmol/L, 4 hours for dark incubation time, 410nm for irradiation wavelength, 14.4J/cm2 for irradiation fluence were the optimal parameters to selectively eliminate promyelocytic leukemia cell HL60 by ALA based PDT. The photosensitization of ALA based PDT caused the necrosis of HL60 cell, so it could be used for inactivation of certain leukemia cells.
基金Supported by the National Key Research and Development Program of China(No.2017YFB0202105,2016YFB0201305,2016YFB0200803,2016YFB0200300)the National Natural Science Foundation of China(No.61521092,91430218,31327901,61472395,61432018).
文摘Performance models provide insightful perspectives to predict performance and to propose optimization guidance.Although there has been much researches,pinpointing bottlenecks of various memory access patterns and reaching high accurate prediction of both regular and irregular programs on various hardware configurations are still not trivial.This work proposes a novel model called process-RAM-feedback(PRF)to quantify the overhead of computation and data transmission time on general-purpose multi-core processors.The PRF model predicts the cost of instruction for singlecore by a directed acyclic graph(DAG)and the transmission time of memory access between each memory hierarchy through a newly designed cache simulator.By using performance modeling and feedback optimization method,this paper uses PRF model to analyze and optimize convolution,sparse matrix-vector multiplication and sn-sweep as case study for covering with typical regular kernel to irregular and data dependence.Through the PRF model,it obtains optimization guidance with various sparsity structures,algorithm designs,and instruction sets support on different data sizes.
基金Supported by the Natonal Natural Science Foundation of China (No. 70071042 60073043)the National 863 Hi-Tech Project of Chi
文摘Recently Guo Tao proposed a stochastic search algorithm in his PhD thesis for solving function optimization problems. He combined the subspace search method (a general multi-parent recombination strategy) with the population hill-climbing method. The former keeps a global search for overall situation, and the latter keeps the convergence of the algorithm. Guo's algorithm has many advantages, such as the simplicity of its structure, the higher accuracy of its results, the wide range of its applications, and the robustness of its use. In this paper a preliminary theoretical analysis of the algorithm is given and some numerical experiments has been done by using Guo's algorithm for demonstrating the theoretical results. Three asynchronous parallel evolutionary algorithms with different granularities for MIMD machines are designed by parallelizing Guo's Algorithm.
文摘Synthetic zeolite Na-A was prepared from Egyptian kaolinite by hydrothermal treatment to be used as an adsorbent for removal of phosphate from aqueous solutions. The present work deals with the application of response surface methodology (RSM) and central composite rotatable design (CCRD) for modeling and optimization of the effect of four operating variables on the removal of phosphate from aqueous solution using zeolite Na-A. The parameters were contact time (0.5 - 6 h), phosphate anion concentrations (10 - 30 mg/L), adsorbent dosage (0.05 - 0.1 g), and solution pH (2 - 7). A total of 26 tests were conducted using the synthetic zeolite Na-A according to the conditions predicted by the statistical design. In order to optimize removal of phosphate by synthetic zeolite Na-A, mathematical equations of quadratic polynomial model were derived from Design Expert Software (Version 6.0.5). Such equations are second-order response functions which represent the amount of phosphate adsorbed (mg/g) and the removal efficiency (%) and are expressed as functions of the selected operating parameters. Predicted values were found to be in good agreement and correlation with experimental results (R2 values of 0.918 and 0.905 for amount of phosphate adsorbed and removal efficiency of it, respectively). To understand the effect of the four variables for optimal removal of phosphate using zeolite Na-A, the models were presented as cube and 3-D response surface graphs. RSM and CCRD could efficiently be applied for the modeling of removing of phosphate from aqueous solution using zeolite Na-A and it is efficient way for obtaining information in a short time and with the fewer number of experiments.
文摘This paper studies the solution technique to solve the DRAMA spares allocation optimization problem. DRAMA model is an analytic spare optimization model of a multi-item, multi-location, and two-echelon inventory system. The computation of its system spares availability is much complicated. The objective function and constraint functions of DRAMA model could be written as the separable forms. A new bound heuristic algorithm has been presented by improving the bound heuristic algorithm for solving the reliability redundancy optimization problem (BHA in short). With the results, the proposed algorithm has been found to be more economical and effective than BHA to obtain the solutions of large DRAMA model. The new algorithm could be used to solve reliability redundancy optimization problems with the separable forms.
文摘In the paper, a new mixed algorithm combined with schemes of nonmonotone line search, the systems of linear equations for higher order modification and sequential quadratic programming for constrained optimizations is presented. Under some weaker assumptions,without strict complementary condition, the algorithm is globally and superlinearly convergent.
基金supported by the National Natural Science Foundation of China(Grant No.52171317)。
文摘Based on the non-equilibrium thermodynamics and energy and exergy analyses,a thermodynamic model of two-stage thermoelectric(TE)cooler(TTEC)driven by two-stage TE generator(TTEG)(TTEG-TTEC)combined TE device is established with involving Thomson effect by fitting method of variable physical parameters of TE materials.Taking total number of TE elements as constraint,influences of number distributions of TE elements on three device performance indictors,that is,cooling load,maximum COP and maximum exergetic efficiency,are analyzed.Three number distributions of TE elements are optimized with three maximum performance indictors as the objectives,respectively.Influences of hot-junction temperature of TTEG and coldjunction temperature of TTEC on optimization results are analyzed,and difference between optimization results corresponding to three performance indicators are studied.Optimal performance intervals and optimal variable intervals are provided.Influences of Thomson effect on three general performance indicators,three optimal performance indicators and optimal variables are comparatively discussed.Thomson effect reduces three general performance indicators and three optimal performance indicators of device.When hot-and cold-junction temperatures of TTEG and TTEC are 450,305,325 and 295 K,respectively,Thomson effect reduced maximum cooling load,maximum COP and maximum exergetic efficiency from 9.528 W,9.043×10^(-2)and2.552%to 6.651 W,6.286×10^(-2)and 1.752%,respectively.
基金supported by the National Natural Science Foundation of China (Grant Nos.52171317 and 51779262)。
文摘Maisotsenko cycle(M-cycle)has been combined with some cooling and power cycles,and behaves important thermodynamic advantage.Finite-time thermodynamics(FTT)is applied to establish three endoreversible models of M-Atkinson,M-Dual and M-Miller cycles.They are performed based on models of endoreversible Atkinson,Dual and Miller cycles by combing FTT model with M-cycle concept.Power output(POW)and thermal efficiency(TEF)of those M-cycles are studied and optimized by numerical calculations.The maximum power output(MPO)and the corresponding pressure ratio and TEF,the maximum TEF and the corresponding pressure ratio and POW,as well as optimal ranges of pressure ratio are obtained.Effects of mass flow rate of circulating water injection,initial cycle temperature and maximum cycle temperature on cycle POW,TEF and optimal pressure ratio range are analyzed.The optimal performances of the three M-cycles are compared with those of traditional Atkinson,Dual and Miller cycles under the same conditions.The results show that for the three M-cycles,end temperature of adiabatic expansion process of M-cycle is less than that of the corresponding traditional cycle,POW and TEF at arbitrary pressure ratio of M-cycle are much higher than those of the corresponding traditional cycle,and performance characteristics of M-cycles are superior to those of the corresponding traditional cycles.
基金Supported by the Natural Science Foundation of China(Grant Nos.12271050,12201268)CAEP Foundation(Grant No.CX20200027)+2 种基金Key Laboratory of Computational Physics Foundation(Grant No.6142A05210502)Science and Technology Program of Gansu Province of China(Grant No.21JR7RA511)the National Science Foundation(DMS 1816313)。
文摘Separable multi-block convex optimization problem appears in many mathematical and engineering fields.In the first part of this paper,we propose an inertial proximal ADMM to solve a linearly constrained separable multi-block convex optimization problem,and we show that the proposed inertial proximal ADMM has global convergence under mild assumptions on the regularization matrices.Affine phase retrieval arises in holography,data separation and phaseless sampling,and it is also considered as a nonhomogeneous version of phase retrieval,which has received considerable attention in recent years.Inspired by convex relaxation of vector sparsity and matrix rank in compressive sensing and by phase lifting in phase retrieval,in the second part of this paper,we introduce a compressive affine phase retrieval via lifting approach to connect affine phase retrieval with multi-block convex optimization,and then based on the proposed inertial proximal ADMM for 3-block convex optimization,we propose an algorithm to recover sparse real signals from their(noisy)affine quadratic measurements.Our numerical simulations show that the proposed algorithm has satisfactory performance for affine phase retrieval of sparse real signals.
基金sponsored by the National Key R&D Program of China(No.2018YFB2100400)the National Natural Science Foundation of China(No.62002077,61872100)+4 种基金the Major Research Plan of the National Natural Science Foundation of China(92167203)the Guangdong Basic and Applied Basic Research Foundation(No.2020A1515110385)the China Postdoctoral Science Foundation(No.2022M710860)the Zhejiang Lab(No.2020NF0AB01)Guangzhou Science and Technology Plan Project(202102010440).
文摘Benefiting from the development of Federated Learning(FL)and distributed communication systems,large-scale intelligent applications become possible.Distributed devices not only provide adequate training data,but also cause privacy leakage and energy consumption.How to optimize the energy consumption in distributed communication systems,while ensuring the privacy of users and model accuracy,has become an urgent challenge.In this paper,we define the FL as a 3-layer architecture including users,agents and server.In order to find a balance among model training accuracy,privacy-preserving effect,and energy consumption,we design the training process of FL as game models.We use an extensive game tree to analyze the key elements that influence the players’decisions in the single game,and then find the incentive mechanism that meet the social norms through the repeated game.The experimental results show that the Nash equilibrium we obtained satisfies the laws of reality,and the proposed incentive mechanism can also promote users to submit high-quality data in FL.Following the multiple rounds of play,the incentive mechanism can help all players find the optimal strategies for energy,privacy,and accuracy of FL in distributed communication systems.
基金funded by the National Key Research and Development Program of China(2018YFE0104200)National Natural Science Foundation of China(51875310,52175274,82172065)Tsinghua Precision Medicine Foundation.
文摘Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not been studied for Mg alloys.In this study,WE43 Mg alloy bulk cubes,porous scaffolds,and thin walls with layer thicknesses of 10,20,30,and 40μm were fabricated.The required laser energy input increased with increasing layer thickness and was different for the bulk cubes and porous scaffolds.Porosity tended to occur at the connection joints in porous scaffolds for LT40 and could be eliminated by reducing the laser energy input.For thin wall parts,a large overhang angle or a small wall thickness resulted in porosity when a large layer thicknesses was used,and the porosity disappeared by reducing the layer thickness or laser energy input.A deeper keyhole penetration was found in all occasions with porosity,explaining the influence of layer thickness,geometrical structure,and laser energy input on the porosity.All the samples achieved a high fusion quality with a relative density of over 99.5%using the optimized laser energy input.The increased layer thickness resulted to more precipitation phases,finer grain sizes and decreased grain texture.With the similar high fusion quality,the tensile strength and elongation of bulk samples were significantly improved from 257 MPa and 1.41%with the 10μm layer to 287 MPa and 15.12%with the 40μm layer,in accordance with the microstructural change.The effect of layer thickness on the compressive properties of porous scaffolds was limited.However,the corrosion rate of bulk samples accelerated with increasing the layer thickness,mainly attributed to the increased number of precipitation phases.
基金supported in part by the National Natural Science Foundation of China(62222301, 62073085, 62073158, 61890930-5, 62021003)the National Key Research and Development Program of China (2021ZD0112302, 2021ZD0112301, 2018YFC1900800-5)Beijing Natural Science Foundation (JQ19013)。
文摘Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52001088,52271269,U1906233)the Natural Science Foundation of Heilongjiang Province(Grant No.LH2021E050)+2 种基金the State Key Laboratory of Ocean Engineering(Grant No.GKZD010084)Liaoning Province’s Xing Liao Talents Program(Grant No.XLYC2002108)Dalian City Supports Innovation and Entrepreneurship Projects for High-Level Talents(Grant No.2021RD16)。
文摘Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components directly affects manufacturing,operation and storage performances of the umbilical.For the multi-layer cross-sectional layout design of the umbilical,a quantifiable multi-objective optimization model is established according to the operation and storage requirements.Considering the manufacturing factors,the multi-layering strategy based on contact point identification is introduced for a great number of functional components.Then,the GA-GLM global optimization algorithm is proposed combining the genetic algorithm and the generalized multiplier method,and the selection operator of the genetic algorithm is improved based on the steepest descent method.Genetic algorithm is used to find the optimal solution in the global space,which can converge from any initial layout to the feasible layout solution.The feasible layout solution is taken as the initial value of the generalized multiplier method for fast and accurate solution.Finally,taking umbilicals with a great number of components as examples,the results show that the cross-sectional performance of the umbilical obtained by optimization algorithm is better and the solution efficiency is higher.Meanwhile,the multi-layering strategy is effective and feasible.The design method proposed in this paper can quickly obtain the optimal multi-layer cross-sectional layout,which replaces the manual design,and provides useful reference and guidance for the umbilical industry.
文摘This research presents a novel nature-inspired metaheuristic algorithm called Frilled Lizard Optimization(FLO),which emulates the unique hunting behavior of frilled lizards in their natural habitat.FLO draws its inspiration from the sit-and-wait hunting strategy of these lizards.The algorithm’s core principles are meticulously detailed and mathematically structured into two distinct phases:(i)an exploration phase,which mimics the lizard’s sudden attack on its prey,and(ii)an exploitation phase,which simulates the lizard’s retreat to the treetops after feeding.To assess FLO’s efficacy in addressing optimization problems,its performance is rigorously tested on fifty-two standard benchmark functions.These functions include unimodal,high-dimensional multimodal,and fixed-dimensional multimodal functions,as well as the challenging CEC 2017 test suite.FLO’s performance is benchmarked against twelve established metaheuristic algorithms,providing a comprehensive comparative analysis.The simulation results demonstrate that FLO excels in both exploration and exploitation,effectively balancing these two critical aspects throughout the search process.This balanced approach enables FLO to outperform several competing algorithms in numerous test cases.Additionally,FLO is applied to twenty-two constrained optimization problems from the CEC 2011 test suite and four complex engineering design problems,further validating its robustness and versatility in solving real-world optimization challenges.Overall,the study highlights FLO’s superior performance and its potential as a powerful tool for tackling a wide range of optimization problems.
基金supported by the National Key R&D Program of China(2022ZD0119604)the National Natural Science Foundation of China(NSFC),(62222308,62173181,62221004)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20220139)the Young Elite Scientists Sponsorship Program by CAST(2021QNRC001)。
文摘Dear Editor,This letter explores optimal formation control for a network of unmanned surface vessels(USVs).By designing an individual objective function for each USV,the optimal formation problem is transformed into a noncooperative game.Under this game theoretic framework,the optimal formation is achieved by seeking the Nash equilibrium of the regularized game.A modular structure consisting of a distributed Nash equilibrium seeker and a regulator is proposed.
文摘In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocolumn configuration.However,this approach frequently necessitates tedious enumeration procedures,resulting in a considerable computational burden.To surmount this formidable challenge,the present study introduces an innovative remedy:The proposition of a superstructure that encompasses both single-column and multiple two-column configurations.Additionally,a simultaneous optimization algorithm is applied to optimize both the process parameters and heat integration structures of the twocolumn configurations.The effectiveness of this approach is demonstrated through a case study focusing on industrial organosilicon separation.The results underscore that the superstructure methodology not only substantially mitigates computational time compared to exhaustive enumeration but also furnishes solutions that exhibit comparable performance.
基金supported by National Natural Science Foundation of China(12372049)Science and Technology Program of China National Accreditation Service for Confor-mity Assessment(2022CNAS15)+1 种基金Sichuan Science and Technology Program(2023JDRC0062)Independent Project of State Key Laboratory of Rail Transit Vehicle System(2023TPL-T06).
文摘Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise.
基金Projects(42177164,52474121)supported by the National Science Foundation of ChinaProject(PBSKL2023A12)supported by the State Key Laboratory of Precision Blasting and Hubei Key Laboratory of Blasting Engineering,China。
文摘In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hybrid predictive model named GWO-RF.This model combines the grey wolf optimization(GWO)algorithm with the random forest(RF)technique to predict the D_(80)value,a critical parameter in evaluating rock fragmentation quality.The study is conducted using a dataset from Sarcheshmeh Copper Mine,employing six different swarm sizes for the GWO-RF hybrid model construction.The GWO-RF model’s hyperparameters are systematically optimized within established bounds,and its performance is rigorously evaluated using multiple evaluation metrics.The results show that the GWO-RF hybrid model has higher predictive skills,exceeding traditional models in terms of accuracy.Furthermore,the interpretability of the GWO-RF model is enhanced through the utilization of SHapley Additive exPlanations(SHAP)values.The insights gained from this research contribute to optimizing blasting operations and rock fragmentation outcomes in the mining industry.