Song [Song D 2004 Phys. Rev. A69034301] first proposed two key distribution schemes with the symmetry feature.We find that, in the schemes, the private channels which Alice and Bob publicly announce the initial Bell s...Song [Song D 2004 Phys. Rev. A69034301] first proposed two key distribution schemes with the symmetry feature.We find that, in the schemes, the private channels which Alice and Bob publicly announce the initial Bell state or the measurement result through are not needed in discovering keys, and Song’s encoding methods do not arrive at the optimization.Here, an optimized encoding method is given so that the efficiencies of Song’s schemes are improved by 7/3 times. Interestingly, this optimized encoding method can be extended to the key distribution scheme composed of generalized Bell states.展开更多
Directional roof cutting(DRC)is one of the key techniques in non-pillar coal mining with self-formed entries(NCMSE)mining method.Due to the inability to accurately measure the expansion coefficient of the goaf rock ma...Directional roof cutting(DRC)is one of the key techniques in non-pillar coal mining with self-formed entries(NCMSE)mining method.Due to the inability to accurately measure the expansion coefficient of the goaf rock mass,the implementation of this technology often encounters design challenges,leading to suboptimal results and increased costs.This paper establishes a structural analysis model of the goaf working face roof,revealing the failure mechanism of DRC,and clarifies the positive role of DRC in improving the stress of the roadway surrounding rock and reducing the subsidence of the roof through numerical simulation experiments.On this basis,the paper further analyses the roadway pressure and roof settlement under different DRC design heights,and ultimately proposes an optimized design method for the DRC height.The results indicate that the implementation of DRC can significantly optimize the stress environment of the working face roadway surrounding rock.At the same time,during the application of DRC,three scenarios may arise:insufficient,reasonable,and excessive DRC height.Insufficient height will significantly reduce the effectiveness of the technology,while excessive height has little impact on the implementation effect but will greatly increase construction costs and difficulty.Engineering verification shows that the optimized DRC design method proposed in this paper reduces the peak stress of the protective coal pillar in the roadway by 27.2%and the central subsidence of the roof by 41.8%,demonstrating excellent application results.This method provides technical support for the further promotion of NCMSE mining method.展开更多
Local and global optimization methods are widely used in geophysical inversion but each has its own advantages and disadvantages. The combination of the two methods will make it possible to overcome their weaknesses. ...Local and global optimization methods are widely used in geophysical inversion but each has its own advantages and disadvantages. The combination of the two methods will make it possible to overcome their weaknesses. Based on the simulated annealing genetic algorithm (SAGA) and the simplex algorithm, an efficient and robust 2-D nonlinear method for seismic travel-time inversion is presented in this paper. First we do a global search over a large range by SAGA and then do a rapid local search using the simplex method. A multi-scale tomography method is adopted in order to reduce non-uniqueness. The velocity field is divided into different spatial scales and velocities at the grid nodes are taken as unknown parameters. The model is parameterized by a bi-cubic spline function. The finite-difference method is used to solve the forward problem while the hybrid method combining multi-scale SAGA and simplex algorithms is applied to the inverse problem. The algorithm has been applied to a numerical test and a travel-time perturbation test using an anomalous low-velocity body. For a practical example, it is used in the study of upper crustal velocity structure of the A'nyemaqen suture zone at the north-east edge of the Qinghai-Tibet Plateau. The model test and practical application both prove that the method is effective and robust.展开更多
The principle of direct method used in optimal control problem is introduced. Details of applying this method to flight trajectory generation are presented including calculation of velocity and controls histories. And...The principle of direct method used in optimal control problem is introduced. Details of applying this method to flight trajectory generation are presented including calculation of velocity and controls histories. And capabilities of flight and propulsion systems are considered also. Combined with digital terrain map technique, the direct method is applied to the three dimensional trajectory optimization for low altitude penetration, and simplex algorithm is used to solve the parameters in optimization. For the small number of parameters, the trajectory can be optimized in real time on board.展开更多
Deterministic optimization methods are combined with the Pareto front concept to solve multi-criterion design problems. The algorithm and the numerical implementation are applied to aerodynamic designs. Evolutionary a...Deterministic optimization methods are combined with the Pareto front concept to solve multi-criterion design problems. The algorithm and the numerical implementation are applied to aerodynamic designs. Evolutionary algorithms (EAs) and the Pareto front concept are used to solve practical design problems in industry for its robustness in capturing convex, concave, discrete or discontinuous Pareto fronts of multi-objective optimization problems. However, the process is time-consuming. Therefore, deterministic optimization methods are introduced to capture the Pareto front, and the types of the captured Pareto front are explained. Numerical experiments show that the deterministic optimization method is a good alternative to EAs for capturing any convex and some concave Pareto fronts in multi-criterion aerodynamic optimization problems due to its efficiency.展开更多
This paper explores the convergence of a class of optimally conditioned self scaling variable metric (OCSSVM) methods for unconstrained optimization. We show that this class of methods with Wolfe line search are glob...This paper explores the convergence of a class of optimally conditioned self scaling variable metric (OCSSVM) methods for unconstrained optimization. We show that this class of methods with Wolfe line search are globally convergent for general convex functions.展开更多
In this paper, a new derivative free trust region method is developed based on the conic interpolation model for the unconstrained optimization. The conic interpolation model is built by means of the quadratic model f...In this paper, a new derivative free trust region method is developed based on the conic interpolation model for the unconstrained optimization. The conic interpolation model is built by means of the quadratic model function, the collinear scaling formula, quadratic approximation and interpolation. All the parameters in this model are determined by objective function interpolation condition. A new derivative free method is developed based upon this model and the global convergence of this new method is proved without any information on gradient.展开更多
The optimal matrix method and optimal elemental method used to update finite element models may not provide accurate results.This situation occurs when the test modal model is incomplete,as is often the case in practi...The optimal matrix method and optimal elemental method used to update finite element models may not provide accurate results.This situation occurs when the test modal model is incomplete,as is often the case in practice.An improved optimal elemental method is presented that defines a new objective function,and as a byproduct,circumvents the need for mass normalized modal shapes,which are also not readily available in practice.To solve the group of nonlinear equations created by the improved optimal method,the Lagrange multiplier method and Matlab function fmincon are employed.To deal with actual complex structures, the float-encoding genetic algorithm(FGA)is introduced to enhance the capability of the improved method.Two examples,a 7- degree of freedom(DOF)mass-spring system and a 53-DOF planar frame,respectively,are updated using the improved method. The example results demonstrate the advantages of the improved method over existing optimal methods,and show that the genetic algorithm is an effective way to update the models used for actual complex structures.展开更多
In the present work, we investigate the inverse problem of reconstructing the parameter of an integro-differential parabolic equation, which comes from pollution problems in porous media, when the final observation is...In the present work, we investigate the inverse problem of reconstructing the parameter of an integro-differential parabolic equation, which comes from pollution problems in porous media, when the final observation is given. We use the optimal control framework to establish both the existence and necessary condition of the minimizer for the cost func- tional. Furthermore, we prove the stability and the local uniqueness of the minimizer. Some numerical results will be presented and discussed.展开更多
Based on the widely used DRASTIC method, a fuzzy pattern recognition and optimization method was proposed and applied to the fissured-karstic aquifer of Zhangji area for assessing groundwater vulnerability to pollutio...Based on the widely used DRASTIC method, a fuzzy pattern recognition and optimization method was proposed and applied to the fissured-karstic aquifer of Zhangji area for assessing groundwater vulnerability to pollution. The result is compared with DRASTIC method. It is shown that by taking the fuzziness into consideration, the fuzzy pattern recognition and optimization method reflects more efficiently the fuzzy nature of the groundwater vulnerability to pollution and is more applicable in reality.展开更多
ICM (Independent Continuous Mapping) method can solve topological optimization problems with the minimized weight as the objective and subjected to displacement constraints. To get a clearer topological configuratio...ICM (Independent Continuous Mapping) method can solve topological optimization problems with the minimized weight as the objective and subjected to displacement constraints. To get a clearer topological configuration, by introducing the discrete condition of topological variables and integrating with the original objective, an optimal model with multi-objectives is formulated to make the topological variables approach 0 or 1 as near as possible, and the model reduces the effect of deleting rate on the result. The image-filtering method is employed to eliminate the checkerboard patterns and mesh dependence that occurred in the topology optimization of a continuum structure. The computational efficiency is enhanced through selecting quasi-active displacement constraints and a design region. Numerical examples indicate that this algorithm is robust and practicable, though the number of iterations is slightly increased with respect to the original algorithm.展开更多
A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of ...A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of high time cost in adopting a rational-based optimal design method for ship structural design. Furthermore,the method was verified by its effective application in optimization of the mid-ship section of a container ship. A full 3-D FEM model of a ship,suffering static and quasi-static loads, was used as the analyzing object for evaluating the structural performance of the mid-ship module, including static strength and buckling performance. Research results reveal that this new method could substantially reduce the computational cost of the rational-based optimization problem without decreasing its accuracy, which increases the feasibility and economic efficiency of using a rational-based optimal design method in ship structural design.展开更多
In this paper,a passive muzzle arc control device(PMACD)of the augmented railguns is studied.By discussing its performance at different numbers of extra rails,a parameter optimization model is proposed.Through the cal...In this paper,a passive muzzle arc control device(PMACD)of the augmented railguns is studied.By discussing its performance at different numbers of extra rails,a parameter optimization model is proposed.Through the calculation model,it is found that the PMACD works well in the simple railgun,which refers to the gun that there is only one pair of rails in the inner bore.The PMACD may decrease the simple railgun’s armature peak current and muzzle arc,but affect its muzzle velocity not much.However,in the augmented railguns it has different characteristics.If the parameters of the PMACD are not selected suitable.It may increase the armature peak current and muzzle arc,but greatly decrease the velocity.The reason for this problem is that the extra rails generate a strong magnetic field in front of the armature,which induces a large current to change the armature current.It is also found that when the resistance and inductance parameters of the PMACD satisfy with the optimization formula,the PMACD can also play a good role in arc suppression in the augmented railguns.Experiments of an augmented railgun with a stainless steel PMACD are carried out to verify this optimization method.Results show that the muzzle arc is obviously controlled.This work may provide a reference for the design of the muzzle arc control device.展开更多
Previous studies about optimizing earthquake structural energy dissipation systems indicated that most existing techniques employ merely one or a few parameters as design variables in the optimization process,and ther...Previous studies about optimizing earthquake structural energy dissipation systems indicated that most existing techniques employ merely one or a few parameters as design variables in the optimization process,and thereby are only applicable only to simple,single,or multiple degree-of-freedom structures.The current approaches to optimization procedures take a specific damper with its properties and observe the effect of applying time history data to the building;however,there are many different dampers and isolators that can be used.Furthermore,there is a lack of studies regarding the optimum location for various viscous and wall dampers.The main aim of this study is hybridization of the particle swarm optimization(PSO) and gravitational search algorithm(GSA) to optimize the performance of earthquake energy dissipation systems(i.e.,damper devices) simultaneously with optimizing the characteristics of the structure.Four types of structural dampers device are considered in this study:(ⅰ) variable stiffness bracing(VSB) system,(ⅱ) rubber wall damper(RWD),(ⅲ) nonlinear conical spring bracing(NCSB) device,(iv) and multi-action stiffener(MAS) device.Since many parameters may affect the design of seismic resistant structures,this study proposes a hybrid of PSO and GSA to develop a hybrid,multi-objective optimization method to resolve the aforementioned problems.The characteristics of the above-mentioned damper devices as well as the section size for structural beams and columns are considered as variables for development of the PSO-GSA optimization algorithm to minimize structural seismic response in terms of nodal displacement(in three directions) as well as plastic hinge formation in structural members simultaneously with the weight of the structure.After that,the optimization algorithm is implemented to identify the best position of the damper device in the structural frame to have the maximum effect and minimize the seismic structure response.To examine the performance of the proposed PSO-GSA optimization method,it has been applied to a three-story reinforced structure equipped with a seismic damper device.The results revealed that the method successfully optimized the earthquake energy dissipation systems and reduced the effects of earthquakes on structures,which significantly increase the building’s stability and safety during seismic excitation.The analysis results showed a reduction in the seismic response of the structure regarding the formation of plastic hinges in structural members as well as the displacement of each story to approximately 99.63%,60.5%,79.13% and 57.42% for the VSB device,RWD,NCSB device,and MAS device,respectively.This shows that using the PSO-GSA optimization algorithm and optimized damper devices in the structure resulted in no structural damage due to earthquake vibration.展开更多
In data mining and machine learning,feature selection is a critical part of the process of selecting the optimal subset of features based on the target data.There are 2n potential feature subsets for every n features ...In data mining and machine learning,feature selection is a critical part of the process of selecting the optimal subset of features based on the target data.There are 2n potential feature subsets for every n features in a dataset,making it difficult to pick the best set of features using standard approaches.Consequently,in this research,a new metaheuristics-based feature selection technique based on an adaptive squirrel search optimization algorithm(ASSOA)has been proposed.When using metaheuristics to pick features,it is common for the selection of features to vary across runs,which can lead to instability.Because of this,we used the adaptive squirrel search to balance exploration and exploitation duties more evenly in the optimization process.For the selection of the best subset of features,we recommend using the binary ASSOA search strategy we developed before.According to the suggested approach,the number of features picked is reduced while maximizing classification accuracy.A ten-feature dataset from the University of California,Irvine(UCI)repository was used to test the proposed method’s performance vs.eleven other state-of-the-art approaches,including binary grey wolf optimization(bGWO),binary hybrid grey wolf and particle swarm optimization(bGWO-PSO),bPSO,binary stochastic fractal search(bSFS),binary whale optimization algorithm(bWOA),binary modified grey wolf optimization(bMGWO),binary multiverse optimization(bMVO),binary bowerbird optimization(bSBO),binary hybrid GWO and genetic algorithm 4028 CMC,2023,vol.74,no.2(bGWO-GA),binary firefly algorithm(bFA),and bGAmethods.Experimental results confirm the superiority and effectiveness of the proposed algorithm for solving the problem of feature selection.展开更多
The paper presents a new solution of inverse displacement analysis of the general six degree-of-freedom serial robot.The inverse displacement analysis of the general serial robot is transformed into a minimization pro...The paper presents a new solution of inverse displacement analysis of the general six degree-of-freedom serial robot.The inverse displacement analysis of the general serial robot is transformed into a minimization problem and then the optimization method is adopted to solve the nonlinear least squares problem with the analytic form of new Jacobian matrix.In this way,joint variables of the general serial robot can be searched out quickly under the desired precision when positions of the three non-collinear end effector points are given.Compared with the general Newton iterative method,the proposed algorithm can search out the solution when the robot is at the singular configuration and the initial configuration used in the optimization method may also be the singular configuration.So the convergence domain is bigger than that of the general Newton iterative method.Another advantage of the proposed algorithm is that positions of the three non-collinear end effector points are usually much easier to be measured than the orientation of the end effector.The inverse displacement analysis of the general 6R(six-revolute-joint) serial robot is illustrated as an example and the simulation results verify the efficiency of the proposed algorithm.Because the three non-collinear points can be selected at random,the method can be applied to any other types of serial robots.展开更多
Phishing attacks are security attacks that do not affect only individuals’or organizations’websites but may affect Internet of Things(IoT)devices and net-works.IoT environment is an exposed environment for such atta...Phishing attacks are security attacks that do not affect only individuals’or organizations’websites but may affect Internet of Things(IoT)devices and net-works.IoT environment is an exposed environment for such attacks.Attackers may use thingbots software for the dispersal of hidden junk emails that are not noticed by users.Machine and deep learning and other methods were used to design detection methods for these attacks.However,there is still a need to enhance detection accuracy.Optimization of an ensemble classification method for phishing website(PW)detection is proposed in this study.A Genetic Algo-rithm(GA)was used for the proposed method optimization by tuning several ensemble Machine Learning(ML)methods parameters,including Random Forest(RF),AdaBoost(AB),XGBoost(XGB),Bagging(BA),GradientBoost(GB),and LightGBM(LGBM).These were accomplished by ranking the optimized classi-fiers to pick out the best classifiers as a base for the proposed method.A PW data-set that is made up of 4898 PWs and 6157 legitimate websites(LWs)was used for this study's experiments.As a result,detection accuracy was enhanced and reached 97.16 percent.展开更多
To be close to the practical flight process and increase the precision of optimal trajectory, a six-degree-offreedom(6-DOF) trajectory is optimized for the reusable launch vehicle(RLV) using the Gauss pseudospectr...To be close to the practical flight process and increase the precision of optimal trajectory, a six-degree-offreedom(6-DOF) trajectory is optimized for the reusable launch vehicle(RLV) using the Gauss pseudospectral method(GPM). Different from the traditional trajectory optimization problem which generally considers the RLV as a point mass, the coupling between translational dynamics and rotational dynamics is taken into account. An optimization problem is formulated to minimize a performance index subject to 6-DOF equations of motion, including translational and rotational dynamics. A two-step optimal strategy is then introduced to reduce the large calculations caused by multiple variables and convergence confinement in 6-DOF trajectory optimization. The simulation results demonstrate that the 6-DOF trajectory optimal strategy for RLV is feasible.展开更多
The present work dealt with the preconcentration of rare earth elements in Saghand ore(Yazd province,Iran)which was achieved by Humphrey spiral using orthogonal optimization method after scrubbing the sample at 45%sol...The present work dealt with the preconcentration of rare earth elements in Saghand ore(Yazd province,Iran)which was achieved by Humphrey spiral using orthogonal optimization method after scrubbing the sample at 45%solid pulp density for 30 min.The pulp was diluted and was fed to a Humphrey spiral for upgrading.The process parameters considered were feed size,feed solids and feed rate,and Taguchi’s L9(34)orthogonal array(OA)was selected for optimization of the process.The results show that the feed rate and feed size were more significant than the other operation parameters of the process.It was also found that under optimal conditions,the concentrate grade of rare earth elements increased from2860 10 6to 6050 10 6and recovery reached to 58%.展开更多
In this work, a design procedure extending the B-spline based finite cell method into shape optimization is developed for axisymmetric solids involving the centrifugal force effect. We first replace the traditional co...In this work, a design procedure extending the B-spline based finite cell method into shape optimization is developed for axisymmetric solids involving the centrifugal force effect. We first replace the traditional conforming mesh in the finite element method with structured cells that are fixed during the whole design process with a view to avoid the sophisticated re-meshing and eventual mesh distortion.Then, B-spline shape functions are further implemented to yield a high-order continuity field along the cell boundary in stress analysis. By means of the implicit description of the shape boundary, stress sensitivity is analytically derived with respect to shape design variables. Finally, we illustrate the efficiency and accuracy of the proposed protocol by several numerical test cases as well as a whole design procedure carried out on an aeronautic turbine disk.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11205115)the Program for Academic Leader Reserve Candidates in Tongling University(Grant No.2014tlxyxs30)the 2014-year Program for Excellent Youth Talents in University of Anhui Province,China
文摘Song [Song D 2004 Phys. Rev. A69034301] first proposed two key distribution schemes with the symmetry feature.We find that, in the schemes, the private channels which Alice and Bob publicly announce the initial Bell state or the measurement result through are not needed in discovering keys, and Song’s encoding methods do not arrive at the optimization.Here, an optimized encoding method is given so that the efficiencies of Song’s schemes are improved by 7/3 times. Interestingly, this optimized encoding method can be extended to the key distribution scheme composed of generalized Bell states.
基金funded by the National Natural Science Foundation of China(52074298)Beijing Municipal Natural Science Foundation(8232056)+1 种基金Guizhou Province science and technology plan project([2020]3008)Liulin Energy and Environment Academician Workstation(2022XDHZ12).
文摘Directional roof cutting(DRC)is one of the key techniques in non-pillar coal mining with self-formed entries(NCMSE)mining method.Due to the inability to accurately measure the expansion coefficient of the goaf rock mass,the implementation of this technology often encounters design challenges,leading to suboptimal results and increased costs.This paper establishes a structural analysis model of the goaf working face roof,revealing the failure mechanism of DRC,and clarifies the positive role of DRC in improving the stress of the roadway surrounding rock and reducing the subsidence of the roof through numerical simulation experiments.On this basis,the paper further analyses the roadway pressure and roof settlement under different DRC design heights,and ultimately proposes an optimized design method for the DRC height.The results indicate that the implementation of DRC can significantly optimize the stress environment of the working face roadway surrounding rock.At the same time,during the application of DRC,three scenarios may arise:insufficient,reasonable,and excessive DRC height.Insufficient height will significantly reduce the effectiveness of the technology,while excessive height has little impact on the implementation effect but will greatly increase construction costs and difficulty.Engineering verification shows that the optimized DRC design method proposed in this paper reduces the peak stress of the protective coal pillar in the roadway by 27.2%and the central subsidence of the roof by 41.8%,demonstrating excellent application results.This method provides technical support for the further promotion of NCMSE mining method.
基金supported by the National Natural Science Foundation of China (Grant Nos.40334040 and 40974033)the Promoting Foundation for Advanced Persons of Talent of NCWU
文摘Local and global optimization methods are widely used in geophysical inversion but each has its own advantages and disadvantages. The combination of the two methods will make it possible to overcome their weaknesses. Based on the simulated annealing genetic algorithm (SAGA) and the simplex algorithm, an efficient and robust 2-D nonlinear method for seismic travel-time inversion is presented in this paper. First we do a global search over a large range by SAGA and then do a rapid local search using the simplex method. A multi-scale tomography method is adopted in order to reduce non-uniqueness. The velocity field is divided into different spatial scales and velocities at the grid nodes are taken as unknown parameters. The model is parameterized by a bi-cubic spline function. The finite-difference method is used to solve the forward problem while the hybrid method combining multi-scale SAGA and simplex algorithms is applied to the inverse problem. The algorithm has been applied to a numerical test and a travel-time perturbation test using an anomalous low-velocity body. For a practical example, it is used in the study of upper crustal velocity structure of the A'nyemaqen suture zone at the north-east edge of the Qinghai-Tibet Plateau. The model test and practical application both prove that the method is effective and robust.
文摘The principle of direct method used in optimal control problem is introduced. Details of applying this method to flight trajectory generation are presented including calculation of velocity and controls histories. And capabilities of flight and propulsion systems are considered also. Combined with digital terrain map technique, the direct method is applied to the three dimensional trajectory optimization for low altitude penetration, and simplex algorithm is used to solve the parameters in optimization. For the small number of parameters, the trajectory can be optimized in real time on board.
文摘Deterministic optimization methods are combined with the Pareto front concept to solve multi-criterion design problems. The algorithm and the numerical implementation are applied to aerodynamic designs. Evolutionary algorithms (EAs) and the Pareto front concept are used to solve practical design problems in industry for its robustness in capturing convex, concave, discrete or discontinuous Pareto fronts of multi-objective optimization problems. However, the process is time-consuming. Therefore, deterministic optimization methods are introduced to capture the Pareto front, and the types of the captured Pareto front are explained. Numerical experiments show that the deterministic optimization method is a good alternative to EAs for capturing any convex and some concave Pareto fronts in multi-criterion aerodynamic optimization problems due to its efficiency.
文摘This paper explores the convergence of a class of optimally conditioned self scaling variable metric (OCSSVM) methods for unconstrained optimization. We show that this class of methods with Wolfe line search are globally convergent for general convex functions.
基金This work was supported by the National Natural Science Foundation of China(10071037)
文摘In this paper, a new derivative free trust region method is developed based on the conic interpolation model for the unconstrained optimization. The conic interpolation model is built by means of the quadratic model function, the collinear scaling formula, quadratic approximation and interpolation. All the parameters in this model are determined by objective function interpolation condition. A new derivative free method is developed based upon this model and the global convergence of this new method is proved without any information on gradient.
基金The China Hi-Tech R&D Program(863 Program) Project Number 2001AA602023
文摘The optimal matrix method and optimal elemental method used to update finite element models may not provide accurate results.This situation occurs when the test modal model is incomplete,as is often the case in practice.An improved optimal elemental method is presented that defines a new objective function,and as a byproduct,circumvents the need for mass normalized modal shapes,which are also not readily available in practice.To solve the group of nonlinear equations created by the improved optimal method,the Lagrange multiplier method and Matlab function fmincon are employed.To deal with actual complex structures, the float-encoding genetic algorithm(FGA)is introduced to enhance the capability of the improved method.Two examples,a 7- degree of freedom(DOF)mass-spring system and a 53-DOF planar frame,respectively,are updated using the improved method. The example results demonstrate the advantages of the improved method over existing optimal methods,and show that the genetic algorithm is an effective way to update the models used for actual complex structures.
基金supported in part by the CNRST Morocco,the Volkswagen Foundation:Grant number I/79315Hydromed project
文摘In the present work, we investigate the inverse problem of reconstructing the parameter of an integro-differential parabolic equation, which comes from pollution problems in porous media, when the final observation is given. We use the optimal control framework to establish both the existence and necessary condition of the minimizer for the cost func- tional. Furthermore, we prove the stability and the local uniqueness of the minimizer. Some numerical results will be presented and discussed.
基金Project (No. ICA4-CT-2001-10039) supported by Manporivers(Management policies for priority water pollutants and their effects onfoods and human health: general methodology and application toChinese river basins)
文摘Based on the widely used DRASTIC method, a fuzzy pattern recognition and optimization method was proposed and applied to the fissured-karstic aquifer of Zhangji area for assessing groundwater vulnerability to pollution. The result is compared with DRASTIC method. It is shown that by taking the fuzziness into consideration, the fuzzy pattern recognition and optimization method reflects more efficiently the fuzzy nature of the groundwater vulnerability to pollution and is more applicable in reality.
基金supported by the National Natural Science Foundation of China(10472003)Beijing Natural Science(3002002)+1 种基金Beijing Educational Committee Foundations(KM200410005019)Suspensofled by American MSC Company.
文摘ICM (Independent Continuous Mapping) method can solve topological optimization problems with the minimized weight as the objective and subjected to displacement constraints. To get a clearer topological configuration, by introducing the discrete condition of topological variables and integrating with the original objective, an optimal model with multi-objectives is formulated to make the topological variables approach 0 or 1 as near as possible, and the model reduces the effect of deleting rate on the result. The image-filtering method is employed to eliminate the checkerboard patterns and mesh dependence that occurred in the topology optimization of a continuum structure. The computational efficiency is enhanced through selecting quasi-active displacement constraints and a design region. Numerical examples indicate that this algorithm is robust and practicable, though the number of iterations is slightly increased with respect to the original algorithm.
基金Supported by the Project of Ministry of Education and Finance(No.200512)the Project of the State Key Laboratory of ocean engineering(GKZD010053-10)
文摘A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of high time cost in adopting a rational-based optimal design method for ship structural design. Furthermore,the method was verified by its effective application in optimization of the mid-ship section of a container ship. A full 3-D FEM model of a ship,suffering static and quasi-static loads, was used as the analyzing object for evaluating the structural performance of the mid-ship module, including static strength and buckling performance. Research results reveal that this new method could substantially reduce the computational cost of the rational-based optimization problem without decreasing its accuracy, which increases the feasibility and economic efficiency of using a rational-based optimal design method in ship structural design.
基金acknowledge the Fundamental Research Funds for the Central Universities(Grants No 309190112102)the Natural Science Foundation of Jiangsu Province(Grants No BK20200493).
文摘In this paper,a passive muzzle arc control device(PMACD)of the augmented railguns is studied.By discussing its performance at different numbers of extra rails,a parameter optimization model is proposed.Through the calculation model,it is found that the PMACD works well in the simple railgun,which refers to the gun that there is only one pair of rails in the inner bore.The PMACD may decrease the simple railgun’s armature peak current and muzzle arc,but affect its muzzle velocity not much.However,in the augmented railguns it has different characteristics.If the parameters of the PMACD are not selected suitable.It may increase the armature peak current and muzzle arc,but greatly decrease the velocity.The reason for this problem is that the extra rails generate a strong magnetic field in front of the armature,which induces a large current to change the armature current.It is also found that when the resistance and inductance parameters of the PMACD satisfy with the optimization formula,the PMACD can also play a good role in arc suppression in the augmented railguns.Experiments of an augmented railgun with a stainless steel PMACD are carried out to verify this optimization method.Results show that the muzzle arc is obviously controlled.This work may provide a reference for the design of the muzzle arc control device.
基金University Putra Malaysia under Putra Grant No.9531200。
文摘Previous studies about optimizing earthquake structural energy dissipation systems indicated that most existing techniques employ merely one or a few parameters as design variables in the optimization process,and thereby are only applicable only to simple,single,or multiple degree-of-freedom structures.The current approaches to optimization procedures take a specific damper with its properties and observe the effect of applying time history data to the building;however,there are many different dampers and isolators that can be used.Furthermore,there is a lack of studies regarding the optimum location for various viscous and wall dampers.The main aim of this study is hybridization of the particle swarm optimization(PSO) and gravitational search algorithm(GSA) to optimize the performance of earthquake energy dissipation systems(i.e.,damper devices) simultaneously with optimizing the characteristics of the structure.Four types of structural dampers device are considered in this study:(ⅰ) variable stiffness bracing(VSB) system,(ⅱ) rubber wall damper(RWD),(ⅲ) nonlinear conical spring bracing(NCSB) device,(iv) and multi-action stiffener(MAS) device.Since many parameters may affect the design of seismic resistant structures,this study proposes a hybrid of PSO and GSA to develop a hybrid,multi-objective optimization method to resolve the aforementioned problems.The characteristics of the above-mentioned damper devices as well as the section size for structural beams and columns are considered as variables for development of the PSO-GSA optimization algorithm to minimize structural seismic response in terms of nodal displacement(in three directions) as well as plastic hinge formation in structural members simultaneously with the weight of the structure.After that,the optimization algorithm is implemented to identify the best position of the damper device in the structural frame to have the maximum effect and minimize the seismic structure response.To examine the performance of the proposed PSO-GSA optimization method,it has been applied to a three-story reinforced structure equipped with a seismic damper device.The results revealed that the method successfully optimized the earthquake energy dissipation systems and reduced the effects of earthquakes on structures,which significantly increase the building’s stability and safety during seismic excitation.The analysis results showed a reduction in the seismic response of the structure regarding the formation of plastic hinges in structural members as well as the displacement of each story to approximately 99.63%,60.5%,79.13% and 57.42% for the VSB device,RWD,NCSB device,and MAS device,respectively.This shows that using the PSO-GSA optimization algorithm and optimized damper devices in the structure resulted in no structural damage due to earthquake vibration.
文摘In data mining and machine learning,feature selection is a critical part of the process of selecting the optimal subset of features based on the target data.There are 2n potential feature subsets for every n features in a dataset,making it difficult to pick the best set of features using standard approaches.Consequently,in this research,a new metaheuristics-based feature selection technique based on an adaptive squirrel search optimization algorithm(ASSOA)has been proposed.When using metaheuristics to pick features,it is common for the selection of features to vary across runs,which can lead to instability.Because of this,we used the adaptive squirrel search to balance exploration and exploitation duties more evenly in the optimization process.For the selection of the best subset of features,we recommend using the binary ASSOA search strategy we developed before.According to the suggested approach,the number of features picked is reduced while maximizing classification accuracy.A ten-feature dataset from the University of California,Irvine(UCI)repository was used to test the proposed method’s performance vs.eleven other state-of-the-art approaches,including binary grey wolf optimization(bGWO),binary hybrid grey wolf and particle swarm optimization(bGWO-PSO),bPSO,binary stochastic fractal search(bSFS),binary whale optimization algorithm(bWOA),binary modified grey wolf optimization(bMGWO),binary multiverse optimization(bMVO),binary bowerbird optimization(bSBO),binary hybrid GWO and genetic algorithm 4028 CMC,2023,vol.74,no.2(bGWO-GA),binary firefly algorithm(bFA),and bGAmethods.Experimental results confirm the superiority and effectiveness of the proposed algorithm for solving the problem of feature selection.
基金Funded by National Natural Science Foundation of China (No. 50905102)the Natural Science Foundation of Guangdong Province (Nos. 10151503101000033 and 8351503101000001)the Building Fund for the Academic Innovation Team of Shantou University (No. ITC10003)
文摘The paper presents a new solution of inverse displacement analysis of the general six degree-of-freedom serial robot.The inverse displacement analysis of the general serial robot is transformed into a minimization problem and then the optimization method is adopted to solve the nonlinear least squares problem with the analytic form of new Jacobian matrix.In this way,joint variables of the general serial robot can be searched out quickly under the desired precision when positions of the three non-collinear end effector points are given.Compared with the general Newton iterative method,the proposed algorithm can search out the solution when the robot is at the singular configuration and the initial configuration used in the optimization method may also be the singular configuration.So the convergence domain is bigger than that of the general Newton iterative method.Another advantage of the proposed algorithm is that positions of the three non-collinear end effector points are usually much easier to be measured than the orientation of the end effector.The inverse displacement analysis of the general 6R(six-revolute-joint) serial robot is illustrated as an example and the simulation results verify the efficiency of the proposed algorithm.Because the three non-collinear points can be selected at random,the method can be applied to any other types of serial robots.
基金This research has been funded by the Scientific Research Deanship at University of Ha'il-Saudi Arabia through Project Number RG-20023.
文摘Phishing attacks are security attacks that do not affect only individuals’or organizations’websites but may affect Internet of Things(IoT)devices and net-works.IoT environment is an exposed environment for such attacks.Attackers may use thingbots software for the dispersal of hidden junk emails that are not noticed by users.Machine and deep learning and other methods were used to design detection methods for these attacks.However,there is still a need to enhance detection accuracy.Optimization of an ensemble classification method for phishing website(PW)detection is proposed in this study.A Genetic Algo-rithm(GA)was used for the proposed method optimization by tuning several ensemble Machine Learning(ML)methods parameters,including Random Forest(RF),AdaBoost(AB),XGBoost(XGB),Bagging(BA),GradientBoost(GB),and LightGBM(LGBM).These were accomplished by ranking the optimized classi-fiers to pick out the best classifiers as a base for the proposed method.A PW data-set that is made up of 4898 PWs and 6157 legitimate websites(LWs)was used for this study's experiments.As a result,detection accuracy was enhanced and reached 97.16 percent.
基金supported by the National Basic Research Program of China(973 Program)(2012CB720003)the National Natural Science Foundation of China(10772011)
文摘To be close to the practical flight process and increase the precision of optimal trajectory, a six-degree-offreedom(6-DOF) trajectory is optimized for the reusable launch vehicle(RLV) using the Gauss pseudospectral method(GPM). Different from the traditional trajectory optimization problem which generally considers the RLV as a point mass, the coupling between translational dynamics and rotational dynamics is taken into account. An optimization problem is formulated to minimize a performance index subject to 6-DOF equations of motion, including translational and rotational dynamics. A two-step optimal strategy is then introduced to reduce the large calculations caused by multiple variables and convergence confinement in 6-DOF trajectory optimization. The simulation results demonstrate that the 6-DOF trajectory optimal strategy for RLV is feasible.
基金the deputy director of Research and Development in Atomic Energy of Iran for financial support as well as Nuclear Science and Technology Research Institute for technical support
文摘The present work dealt with the preconcentration of rare earth elements in Saghand ore(Yazd province,Iran)which was achieved by Humphrey spiral using orthogonal optimization method after scrubbing the sample at 45%solid pulp density for 30 min.The pulp was diluted and was fed to a Humphrey spiral for upgrading.The process parameters considered were feed size,feed solids and feed rate,and Taguchi’s L9(34)orthogonal array(OA)was selected for optimization of the process.The results show that the feed rate and feed size were more significant than the other operation parameters of the process.It was also found that under optimal conditions,the concentrate grade of rare earth elements increased from2860 10 6to 6050 10 6and recovery reached to 58%.
基金supported by the National Natura Science Foundation of China (Grant 51275424)973 Program (Gran2011CB610304)+1 种基金Research Fund for the Doctoral Program of Higher Education of China (Grant 20126102130003)the opening project (Grant KFJJ13-6M) of the State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology)
文摘In this work, a design procedure extending the B-spline based finite cell method into shape optimization is developed for axisymmetric solids involving the centrifugal force effect. We first replace the traditional conforming mesh in the finite element method with structured cells that are fixed during the whole design process with a view to avoid the sophisticated re-meshing and eventual mesh distortion.Then, B-spline shape functions are further implemented to yield a high-order continuity field along the cell boundary in stress analysis. By means of the implicit description of the shape boundary, stress sensitivity is analytically derived with respect to shape design variables. Finally, we illustrate the efficiency and accuracy of the proposed protocol by several numerical test cases as well as a whole design procedure carried out on an aeronautic turbine disk.