This research paper investigates the interface design and functional optimization of Chinese learning apps through the lens of user experience.With the increasing popularity of Chinese language learning apps in the er...This research paper investigates the interface design and functional optimization of Chinese learning apps through the lens of user experience.With the increasing popularity of Chinese language learning apps in the era of rapid mobile internet development,users'demands for enhanced interface design and interaction experience have grown significantly.The study aims to explore the influence of user feedback on the design and functionality of Chinese learning apps,proposing optimization strategies to improve user experience and learning outcomes.By conducting a comprehensive literature review,utilizing methods such as surveys and user interviews for data collection,and analyzing user feedback,this research identifies existing issues in the interface design and interaction experience of Chinese learning apps.The results present user opinions,feedback analysis,identified problems,improvement directions,and specific optimization strategies.The study discusses the potential impact of these optimization strategies on enhancing user experience and learning outcomes,compares findings with previous research,addresses limitations,and suggests future research directions.In conclusion,this research contributes to enriching the design theory of Chinese learning apps,offering practical optimization recommendations for developers,and supporting the continuous advancement of Chinese language learning apps.展开更多
Aiming at the problems that the original Harris Hawk optimization algorithm is easy to fall into local optimum and slow in finding the optimum,this paper proposes an improved Harris Hawk optimization algorithm(GHHO).F...Aiming at the problems that the original Harris Hawk optimization algorithm is easy to fall into local optimum and slow in finding the optimum,this paper proposes an improved Harris Hawk optimization algorithm(GHHO).Firstly,we used a Gaussian chaotic mapping strategy to initialize the positions of individuals in the population,which enriches the initial individual species characteristics.Secondly,by optimizing the energy parameter and introducing the cosine strategy,the algorithm's ability to jump out of the local optimum is enhanced,which improves the performance of the algorithm.Finally,comparison experiments with other intelligent algorithms were conducted on 13 classical test function sets.The results show that GHHO has better performance in all aspects compared to other optimization algorithms.The improved algorithm is more suitable for generalization to real optimization problems.展开更多
A new algorithm based on genetic algorithm(GA) is developed for solving function optimization problems with inequality constraints. This algorithm has been used to a series of standard test problems and exhibited good...A new algorithm based on genetic algorithm(GA) is developed for solving function optimization problems with inequality constraints. This algorithm has been used to a series of standard test problems and exhibited good performance. The computation results show that its generality, precision, robustness, simplicity and performance are all satisfactory.展开更多
An adaptive immune-genetic algorithm (AIGA) is proposed to avoid premature convergence and guarantee the diversity of the population. Rapid immune response (secondary response), adaptive mutation and density opera...An adaptive immune-genetic algorithm (AIGA) is proposed to avoid premature convergence and guarantee the diversity of the population. Rapid immune response (secondary response), adaptive mutation and density operators in the AIGA are emphatically designed to improve the searching ability, greatly increase the converging speed, and decrease locating the local maxima due to the premature convergence. The simulation results obtained from the global optimization to four multivariable and multi-extreme functions show that AIGA converges rapidly, guarantees the diversity, stability and good searching ability.展开更多
A simplex particle swarm optimization(simplex-PSO) derived from the Nelder-Mead simplex method was proposed to optimize the high dimensionality functions.In simplex-PSO,the velocity term was abandoned and its referenc...A simplex particle swarm optimization(simplex-PSO) derived from the Nelder-Mead simplex method was proposed to optimize the high dimensionality functions.In simplex-PSO,the velocity term was abandoned and its reference objectives were the best particle and the centroid of all particles except the best particle.The convergence theorems of linear time-varying discrete system proved that simplex-PSO is of consistent asymptotic convergence.In order to reduce the probability of trapping into a local optimal value,an extremum mutation was introduced into simplex-PSO and simplex-PSO-t(simplex-PSO with turbulence) was devised.Several experiments were carried out to verify the validity of simplex-PSO and simplex-PSO-t,and the experimental results confirmed the conclusions:(1) simplex-PSO-t can optimize high-dimension functions with 200-dimensionality;(2) compared PSO with chaos PSO(CPSO),the best optimum index increases by a factor of 1×102-1×104.展开更多
This paper presents a two-phase genetic algorithm (TPGA) based on the multi- parent genetic algorithm (MPGA). Through analysis we find MPGA will lead the population' s evol vement to diversity or convergence accor...This paper presents a two-phase genetic algorithm (TPGA) based on the multi- parent genetic algorithm (MPGA). Through analysis we find MPGA will lead the population' s evol vement to diversity or convergence according to the population size and the crossover size, so we make it run in different forms during the global and local optimization phases and then forms TPGA. The experiment results show that TPGA is very efficient for the optimization of low-dimension multi-modal functions, usually we can obtain all the global optimal solutions.展开更多
This paper presents a parallel two-level evolutionary algorithm based on domain decomposition for solving function optimization problem containing multiple solutions. By combining the characteristics of the global sea...This paper presents a parallel two-level evolutionary algorithm based on domain decomposition for solving function optimization problem containing multiple solutions. By combining the characteristics of the global search and local search in each sub-domain, the former enables individual to draw closer to each optima and keeps the diversity of individuals, while the latter selects local optimal solutions known as latent solutions in sub-domain. In the end, by selecting the global optimal solutions from latent solutions in each sub-domain, we can discover all the optimal solutions easily and quickly.展开更多
A quasi-filled function for nonlinear integer programming problem is given in this paper. This function contains two parameters which are easily to be chosen. Theoretical properties of the proposed quasi-filled functi...A quasi-filled function for nonlinear integer programming problem is given in this paper. This function contains two parameters which are easily to be chosen. Theoretical properties of the proposed quasi-filled function are investigated. Moreover, we also propose a new solution algorithm using this quasi-filled function to solve nonlinear integer programming problem in this paper. The examples with 2 to 6 variables are tested and computational results indicated the efficiency and reliability of the pro- posed quasi-filled function algorithm.展开更多
Dipper throated optimization(DTO)algorithm is a novel with a very efficient metaheuristic inspired by the dipper throated bird.DTO has its unique hunting technique by performing rapid bowing movements.To show the effi...Dipper throated optimization(DTO)algorithm is a novel with a very efficient metaheuristic inspired by the dipper throated bird.DTO has its unique hunting technique by performing rapid bowing movements.To show the efficiency of the proposed algorithm,DTO is tested and compared to the algorithms of Particle Swarm Optimization(PSO),Whale Optimization Algorithm(WOA),Grey Wolf Optimizer(GWO),and Genetic Algorithm(GA)based on the seven unimodal benchmark functions.Then,ANOVA and Wilcoxon rank-sum tests are performed to confirm the effectiveness of the DTO compared to other optimization techniques.Additionally,to demonstrate the proposed algorithm’s suitability for solving complex realworld issues,DTO is used to solve the feature selection problem.The strategy of using DTOs as feature selection is evaluated using commonly used data sets from the University of California at Irvine(UCI)repository.The findings indicate that the DTO outperforms all other algorithms in addressing feature selection issues,demonstrating the proposed algorithm’s capabilities to solve complex real-world situations.展开更多
The existing studies, concerning the dressing process, focus on the major influence of the dressing conditions on the grinding response variables. However, the choice of the dressing conditions is often made, based on...The existing studies, concerning the dressing process, focus on the major influence of the dressing conditions on the grinding response variables. However, the choice of the dressing conditions is often made, based on the experience of the qualified staff or using data from reference books. The optimal dressing parameters, which are only valid for the particular methods and dressing and grinding conditions, are also used. The paper presents a methodology for optimization of the dressing parameters in cylindrical grinding. The generalized utility function has been chosen as an optimization parameter. It is a complex indicator determining the economic, dynamic and manufacturing characteristics of the grinding process. The developed methodology is implemented for the dressing of aluminium oxide grinding wheels by using experimental diamond roller dressers with different grit sizes made of medium- and high-strength synthetic diamonds type AC32 and AC80. To solve the optimization problem, a model of the generalized utility function is created which reflects the complex impact of dressing parameters. The model is built based on the results from the conducted complex study and modeling of the grinding wheel lifetime, cutting ability, production rate and cutting forces during grinding. They are closely related to the dressing conditions (dressing speed ratio, radial in-feed of the diamond roller dresser and dress-out time), the diamond roller dresser grit size/grinding wheel grit size ratio, the type of synthetic diamonds and the direction of dressing. Some dressing parameters are determined for which the generalized utility fimction has a maximum and which guarantee an optimum combination of the following: the lifetime and cutting ability of the abrasive wheels, the tangential cutting force magnitude and the production rate of the grinding process. The results obtained prove the possibility of control and optimization of grinding by selecting particular dressing parameters.展开更多
A novel immune genetic algorithm with the elitist selection and elitist crossover was proposed, which is called the immune genetic algorithm with the elitism (IGAE). In IGAE, the new methods for computing antibody s...A novel immune genetic algorithm with the elitist selection and elitist crossover was proposed, which is called the immune genetic algorithm with the elitism (IGAE). In IGAE, the new methods for computing antibody similarity, expected reproduction probability, and clonal selection probability were given. IGAE has three features. The first is that the similarities of two antibodies in structure and quality are all defined in the form of percentage, which helps to describe the similarity of two antibodies more accurately and to reduce the computational burden effectively. The second is that with the elitist selection and elitist crossover strategy IGAE is able to find the globally optimal solution of a given problem. The third is that the formula of expected reproduction probability of antibody can be adjusted through a parameter r, which helps to balance the population diversity and the convergence speed of IGAE so that IGAE can find the globally optimal solution of a given problem more rapidly. Two different complex multi-modal functions were selected to test the validity of IGAE. The experimental results show that IGAE can find the globally maximum/minimum values of the two functions rapidly. The experimental results also confirm that IGAE is of better performance in convergence speed, solution variation behavior, and computational efficiency compared with the canonical genetic algorithm with the elitism and the immune genetic algorithm with the information entropy and elitism.展开更多
To properly describe and solve complex decision problems, research on theoretical properties and solution of mixed-integer quadratic programs is becoming very important. We establish in this paper different Lipschitz-...To properly describe and solve complex decision problems, research on theoretical properties and solution of mixed-integer quadratic programs is becoming very important. We establish in this paper different Lipschitz-type continuity results about the optimal value function and optimal solutions of mixed-integer parametric quadratic programs with parameters in the linear part of the objective function and in the right-hand sides of the linear constraints. The obtained results extend some existing results for continuous quadratic programs, and, more importantly, lay the foundation for further theoretical study and corresponding algorithm analysis on mixed-integer quadratic programs.展开更多
A conventional global contrast enhancement is difficult to apply in various images because image quality and contrast enhancement are dependent on image characteristics largely. And a local contrast enhancement not on...A conventional global contrast enhancement is difficult to apply in various images because image quality and contrast enhancement are dependent on image characteristics largely. And a local contrast enhancement not only causes a washed-out effect, but also blocks. To solve these drawbacks, this paper derives an optimal global equalization function with variable size block based local contrast enhancement. The optimal equalization function makes it possible to get a good quality image through the global contrast enhancement. The variable size block segmentation is firstly exeoated using intensity differences as a measure of similarity. In the second step, the optimal global equalization function is obtained from the enhanced contrast image having variable size blocks. Conformed experiments have showed that the proposed algorithm produces a visually comfortable result image.展开更多
The best recovery of a linear functional Lf, f=f(x,y), on the basis of given linear functionals L jf,j=1,2,...,N in a sense of Sard has been investigated, using analogy of Peano's theorem. The best recovery of a ...The best recovery of a linear functional Lf, f=f(x,y), on the basis of given linear functionals L jf,j=1,2,...,N in a sense of Sard has been investigated, using analogy of Peano's theorem. The best recovery of a bivariate function by given scattered data has been obtained in a simple analytical form as a special case.展开更多
A new smooth gap function for the box constrained variational inequality problem (VIP) is proposed based on an integral global optimality condition. The smooth gap function is simple and has some good differentiable...A new smooth gap function for the box constrained variational inequality problem (VIP) is proposed based on an integral global optimality condition. The smooth gap function is simple and has some good differentiable properties. The box constrained VIP can be reformulated as a differentiable optimization problem by the proposed smooth gap function. The conditions, under which any stationary point of the optimization problem is the solution to the box constrained VIP, are discussed. A simple frictional contact problem is analyzed to show the applications of the smooth gap function. Finally, the numerical experiments confirm the good theoretical properties of the method.展开更多
In this paper,the kernel of the cubic spline interpolation is given.An optimal error bound for the cu- bic spline interpolation of lower smooth functions is obtained.
This study focuses on investigating the optimal investment strategy for an optimization problem with delay using the uncertainty theory. The financial market is composed of a risk-free asset and a risk asset with an u...This study focuses on investigating the optimal investment strategy for an optimization problem with delay using the uncertainty theory. The financial market is composed of a risk-free asset and a risk asset with an uncertain price process described by an uncertain differential equation. An optimization problem is assumed that its objective is a nonlinear function of decision variable. By deriving the equation of optimality, an analytical solution is obtained for the optimal delay investment strategy, and the optimal delay value function. Finally, an economic analysis and numerical sensitivity analysis are conducted to evaluate the research results.展开更多
Energy supply is one of the most critical challenges of wireless sensor networks(WSNs)and industrial wireless sensor networks(IWSNs).While research on coverage optimization problem(COP)centers on the network’s monito...Energy supply is one of the most critical challenges of wireless sensor networks(WSNs)and industrial wireless sensor networks(IWSNs).While research on coverage optimization problem(COP)centers on the network’s monitoring coverage,this research focuses on the power banks’energy supply coverage.The study of 2-D and 3-D spaces is typical in IWSN,with the realistic environment being more complex with obstacles(i.e.,machines).A 3-D surface is the field of interest(FOI)in this work with the established hybrid power bank deployment model for the energy supply COP optimization of IWSN.The hybrid power bank deployment model is highly adaptive and flexible for new or existing plants already using the IWSN system.The model improves the power supply to a more considerable extent with the least number of power bank deployments.The main innovation in this work is the utilization of a more practical surface model with obstacles and training while improving the convergence speed and quality of the heuristic algorithm.An overall probabilistic coverage rate analysis of every point on the FOI is provided,not limiting the scope to target points or areas.Bresenham’s algorithm is extended from 2-D to 3-D surface to enhance the probabilistic covering model for coverage measurement.A dynamic search strategy(DSS)is proposed to modify the artificial bee colony(ABC)and balance the exploration and exploitation ability for better convergence toward eliminating NP-hard deployment problems.Further,the cellular automata(CA)is utilized to enhance the convergence speed.The case study based on two typical FOI in the IWSN shows that the CA scheme effectively speeds up the optimization process.Comparative experiments are conducted on four benchmark functions to validate the effectiveness of the proposed method.The experimental results show that the proposed algorithm outperforms the ABC and gbest-guided ABC(GABC)algorithms.The results show that the proposed energy coverage optimization method based on the hybrid power bank deployment model generates more accurate results than the results obtained by similar algorithms(i.e.,ABC,GABC).The proposed model is,therefore,effective and efficient for optimization in the IWSN.展开更多
文摘This research paper investigates the interface design and functional optimization of Chinese learning apps through the lens of user experience.With the increasing popularity of Chinese language learning apps in the era of rapid mobile internet development,users'demands for enhanced interface design and interaction experience have grown significantly.The study aims to explore the influence of user feedback on the design and functionality of Chinese learning apps,proposing optimization strategies to improve user experience and learning outcomes.By conducting a comprehensive literature review,utilizing methods such as surveys and user interviews for data collection,and analyzing user feedback,this research identifies existing issues in the interface design and interaction experience of Chinese learning apps.The results present user opinions,feedback analysis,identified problems,improvement directions,and specific optimization strategies.The study discusses the potential impact of these optimization strategies on enhancing user experience and learning outcomes,compares findings with previous research,addresses limitations,and suggests future research directions.In conclusion,this research contributes to enriching the design theory of Chinese learning apps,offering practical optimization recommendations for developers,and supporting the continuous advancement of Chinese language learning apps.
文摘Aiming at the problems that the original Harris Hawk optimization algorithm is easy to fall into local optimum and slow in finding the optimum,this paper proposes an improved Harris Hawk optimization algorithm(GHHO).Firstly,we used a Gaussian chaotic mapping strategy to initialize the positions of individuals in the population,which enriches the initial individual species characteristics.Secondly,by optimizing the energy parameter and introducing the cosine strategy,the algorithm's ability to jump out of the local optimum is enhanced,which improves the performance of the algorithm.Finally,comparison experiments with other intelligent algorithms were conducted on 13 classical test function sets.The results show that GHHO has better performance in all aspects compared to other optimization algorithms.The improved algorithm is more suitable for generalization to real optimization problems.
文摘A new algorithm based on genetic algorithm(GA) is developed for solving function optimization problems with inequality constraints. This algorithm has been used to a series of standard test problems and exhibited good performance. The computation results show that its generality, precision, robustness, simplicity and performance are all satisfactory.
基金the Research Fund for the Doctoral Program of Higher Education of China (20020008004).
文摘An adaptive immune-genetic algorithm (AIGA) is proposed to avoid premature convergence and guarantee the diversity of the population. Rapid immune response (secondary response), adaptive mutation and density operators in the AIGA are emphatically designed to improve the searching ability, greatly increase the converging speed, and decrease locating the local maxima due to the premature convergence. The simulation results obtained from the global optimization to four multivariable and multi-extreme functions show that AIGA converges rapidly, guarantees the diversity, stability and good searching ability.
基金Project(50275150) supported by the National Natural Science Foundation of ChinaProject(20070533131) supported by Research Fund for the Doctoral Program of Higher Education of China
文摘A simplex particle swarm optimization(simplex-PSO) derived from the Nelder-Mead simplex method was proposed to optimize the high dimensionality functions.In simplex-PSO,the velocity term was abandoned and its reference objectives were the best particle and the centroid of all particles except the best particle.The convergence theorems of linear time-varying discrete system proved that simplex-PSO is of consistent asymptotic convergence.In order to reduce the probability of trapping into a local optimal value,an extremum mutation was introduced into simplex-PSO and simplex-PSO-t(simplex-PSO with turbulence) was devised.Several experiments were carried out to verify the validity of simplex-PSO and simplex-PSO-t,and the experimental results confirmed the conclusions:(1) simplex-PSO-t can optimize high-dimension functions with 200-dimensionality;(2) compared PSO with chaos PSO(CPSO),the best optimum index increases by a factor of 1×102-1×104.
基金Supported by the National Natural Science Foundation of China (70071042,60073043,60133010)
文摘This paper presents a two-phase genetic algorithm (TPGA) based on the multi- parent genetic algorithm (MPGA). Through analysis we find MPGA will lead the population' s evol vement to diversity or convergence according to the population size and the crossover size, so we make it run in different forms during the global and local optimization phases and then forms TPGA. The experiment results show that TPGA is very efficient for the optimization of low-dimension multi-modal functions, usually we can obtain all the global optimal solutions.
基金Supported by the National Natural Science Foundation of China(60133010,60073043,70071042)
文摘This paper presents a parallel two-level evolutionary algorithm based on domain decomposition for solving function optimization problem containing multiple solutions. By combining the characteristics of the global search and local search in each sub-domain, the former enables individual to draw closer to each optima and keeps the diversity of individuals, while the latter selects local optimal solutions known as latent solutions in sub-domain. In the end, by selecting the global optimal solutions from latent solutions in each sub-domain, we can discover all the optimal solutions easily and quickly.
基金Project (Nos. 10571137 and 10271073) supported by the NationalNatural Science Foundation of China
文摘A quasi-filled function for nonlinear integer programming problem is given in this paper. This function contains two parameters which are easily to be chosen. Theoretical properties of the proposed quasi-filled function are investigated. Moreover, we also propose a new solution algorithm using this quasi-filled function to solve nonlinear integer programming problem in this paper. The examples with 2 to 6 variables are tested and computational results indicated the efficiency and reliability of the pro- posed quasi-filled function algorithm.
文摘Dipper throated optimization(DTO)algorithm is a novel with a very efficient metaheuristic inspired by the dipper throated bird.DTO has its unique hunting technique by performing rapid bowing movements.To show the efficiency of the proposed algorithm,DTO is tested and compared to the algorithms of Particle Swarm Optimization(PSO),Whale Optimization Algorithm(WOA),Grey Wolf Optimizer(GWO),and Genetic Algorithm(GA)based on the seven unimodal benchmark functions.Then,ANOVA and Wilcoxon rank-sum tests are performed to confirm the effectiveness of the DTO compared to other optimization techniques.Additionally,to demonstrate the proposed algorithm’s suitability for solving complex realworld issues,DTO is used to solve the feature selection problem.The strategy of using DTOs as feature selection is evaluated using commonly used data sets from the University of California at Irvine(UCI)repository.The findings indicate that the DTO outperforms all other algorithms in addressing feature selection issues,demonstrating the proposed algorithm’s capabilities to solve complex real-world situations.
文摘The existing studies, concerning the dressing process, focus on the major influence of the dressing conditions on the grinding response variables. However, the choice of the dressing conditions is often made, based on the experience of the qualified staff or using data from reference books. The optimal dressing parameters, which are only valid for the particular methods and dressing and grinding conditions, are also used. The paper presents a methodology for optimization of the dressing parameters in cylindrical grinding. The generalized utility function has been chosen as an optimization parameter. It is a complex indicator determining the economic, dynamic and manufacturing characteristics of the grinding process. The developed methodology is implemented for the dressing of aluminium oxide grinding wheels by using experimental diamond roller dressers with different grit sizes made of medium- and high-strength synthetic diamonds type AC32 and AC80. To solve the optimization problem, a model of the generalized utility function is created which reflects the complex impact of dressing parameters. The model is built based on the results from the conducted complex study and modeling of the grinding wheel lifetime, cutting ability, production rate and cutting forces during grinding. They are closely related to the dressing conditions (dressing speed ratio, radial in-feed of the diamond roller dresser and dress-out time), the diamond roller dresser grit size/grinding wheel grit size ratio, the type of synthetic diamonds and the direction of dressing. Some dressing parameters are determined for which the generalized utility fimction has a maximum and which guarantee an optimum combination of the following: the lifetime and cutting ability of the abrasive wheels, the tangential cutting force magnitude and the production rate of the grinding process. The results obtained prove the possibility of control and optimization of grinding by selecting particular dressing parameters.
基金Project(50275150) supported by the National Natural Science Foundation of ChinaProjects(20040533035, 20070533131) supported by the National Research Foundation for the Doctoral Program of Higher Education of China
文摘A novel immune genetic algorithm with the elitist selection and elitist crossover was proposed, which is called the immune genetic algorithm with the elitism (IGAE). In IGAE, the new methods for computing antibody similarity, expected reproduction probability, and clonal selection probability were given. IGAE has three features. The first is that the similarities of two antibodies in structure and quality are all defined in the form of percentage, which helps to describe the similarity of two antibodies more accurately and to reduce the computational burden effectively. The second is that with the elitist selection and elitist crossover strategy IGAE is able to find the globally optimal solution of a given problem. The third is that the formula of expected reproduction probability of antibody can be adjusted through a parameter r, which helps to balance the population diversity and the convergence speed of IGAE so that IGAE can find the globally optimal solution of a given problem more rapidly. Two different complex multi-modal functions were selected to test the validity of IGAE. The experimental results show that IGAE can find the globally maximum/minimum values of the two functions rapidly. The experimental results also confirm that IGAE is of better performance in convergence speed, solution variation behavior, and computational efficiency compared with the canonical genetic algorithm with the elitism and the immune genetic algorithm with the information entropy and elitism.
基金Supported by the National Natural Science Foundation of China(10571141,70971109)the Key Projectof the National Natural Science Foundation of China(70531030)
文摘To properly describe and solve complex decision problems, research on theoretical properties and solution of mixed-integer quadratic programs is becoming very important. We establish in this paper different Lipschitz-type continuity results about the optimal value function and optimal solutions of mixed-integer parametric quadratic programs with parameters in the linear part of the objective function and in the right-hand sides of the linear constraints. The obtained results extend some existing results for continuous quadratic programs, and, more importantly, lay the foundation for further theoretical study and corresponding algorithm analysis on mixed-integer quadratic programs.
文摘A conventional global contrast enhancement is difficult to apply in various images because image quality and contrast enhancement are dependent on image characteristics largely. And a local contrast enhancement not only causes a washed-out effect, but also blocks. To solve these drawbacks, this paper derives an optimal global equalization function with variable size block based local contrast enhancement. The optimal equalization function makes it possible to get a good quality image through the global contrast enhancement. The variable size block segmentation is firstly exeoated using intensity differences as a measure of similarity. In the second step, the optimal global equalization function is obtained from the enhanced contrast image having variable size blocks. Conformed experiments have showed that the proposed algorithm produces a visually comfortable result image.
文摘The best recovery of a linear functional Lf, f=f(x,y), on the basis of given linear functionals L jf,j=1,2,...,N in a sense of Sard has been investigated, using analogy of Peano's theorem. The best recovery of a bivariate function by given scattered data has been obtained in a simple analytical form as a special case.
基金Project supported by the National Natural Science Foundation of China(Nos.10902077,11172209, and 10572031)
文摘A new smooth gap function for the box constrained variational inequality problem (VIP) is proposed based on an integral global optimality condition. The smooth gap function is simple and has some good differentiable properties. The box constrained VIP can be reformulated as a differentiable optimization problem by the proposed smooth gap function. The conditions, under which any stationary point of the optimization problem is the solution to the box constrained VIP, are discussed. A simple frictional contact problem is analyzed to show the applications of the smooth gap function. Finally, the numerical experiments confirm the good theoretical properties of the method.
文摘In this paper,the kernel of the cubic spline interpolation is given.An optimal error bound for the cu- bic spline interpolation of lower smooth functions is obtained.
文摘This study focuses on investigating the optimal investment strategy for an optimization problem with delay using the uncertainty theory. The financial market is composed of a risk-free asset and a risk asset with an uncertain price process described by an uncertain differential equation. An optimization problem is assumed that its objective is a nonlinear function of decision variable. By deriving the equation of optimality, an analytical solution is obtained for the optimal delay investment strategy, and the optimal delay value function. Finally, an economic analysis and numerical sensitivity analysis are conducted to evaluate the research results.
文摘Energy supply is one of the most critical challenges of wireless sensor networks(WSNs)and industrial wireless sensor networks(IWSNs).While research on coverage optimization problem(COP)centers on the network’s monitoring coverage,this research focuses on the power banks’energy supply coverage.The study of 2-D and 3-D spaces is typical in IWSN,with the realistic environment being more complex with obstacles(i.e.,machines).A 3-D surface is the field of interest(FOI)in this work with the established hybrid power bank deployment model for the energy supply COP optimization of IWSN.The hybrid power bank deployment model is highly adaptive and flexible for new or existing plants already using the IWSN system.The model improves the power supply to a more considerable extent with the least number of power bank deployments.The main innovation in this work is the utilization of a more practical surface model with obstacles and training while improving the convergence speed and quality of the heuristic algorithm.An overall probabilistic coverage rate analysis of every point on the FOI is provided,not limiting the scope to target points or areas.Bresenham’s algorithm is extended from 2-D to 3-D surface to enhance the probabilistic covering model for coverage measurement.A dynamic search strategy(DSS)is proposed to modify the artificial bee colony(ABC)and balance the exploration and exploitation ability for better convergence toward eliminating NP-hard deployment problems.Further,the cellular automata(CA)is utilized to enhance the convergence speed.The case study based on two typical FOI in the IWSN shows that the CA scheme effectively speeds up the optimization process.Comparative experiments are conducted on four benchmark functions to validate the effectiveness of the proposed method.The experimental results show that the proposed algorithm outperforms the ABC and gbest-guided ABC(GABC)algorithms.The results show that the proposed energy coverage optimization method based on the hybrid power bank deployment model generates more accurate results than the results obtained by similar algorithms(i.e.,ABC,GABC).The proposed model is,therefore,effective and efficient for optimization in the IWSN.