The accurate dissociation energy and equilibrium geometry of the ball state of ^7LiH molecule is calculated using a symmetry-adapted-cluster configuration-interaction method in full active space. And the calculated re...The accurate dissociation energy and equilibrium geometry of the ball state of ^7LiH molecule is calculated using a symmetry-adapted-cluster configuration-interaction method in full active space. And the calculated results are 0.2580 eV and 0.1958 nm for the dissociation energy and equilibrium geometry, respectively. The whole potential energy curve for the b^3∏ state is also calculated over the internuclear separation range from about 0.10 to 0.54 nm. The results are fitted by the Murrell-Sorbie function. It is found that the Murrell-Sorbie function form, which is mainly used to fit the ground-state potential energy function, is well suitable for the excited triplet b^3∏ state. The vertical excitation energy from the ground state to the b^3∏ state is calculated to be 4.233 eV. Based on the analytic potential energy function, the harmonic frequency of 610.88 cm^-1 about this state is firstly estimated. Compared with other theoretical results, this work is the most complete effort to deal with the analytic potential energy function and the harmonic frequency of this state.展开更多
Considerable interest in hydrogen bonding involving chalcogen has been growing since the IUPAC committee has redefined hydrogen bonding. Not only the focus is on unconventional acceptors, but also on donors not discus...Considerable interest in hydrogen bonding involving chalcogen has been growing since the IUPAC committee has redefined hydrogen bonding. Not only the focus is on unconventional acceptors, but also on donors not discussed before. It has been mentioned in previous studies that the proton of the H-C group could be involved in hydrogen bonding, but with conventional acceptors. In this study, we explored the ability of hydrogen bond formation of Se, S and Te acceptors with the H-C donor using Cambridge Structural Database in conjunction with Ab Initio calculations. In the CSD, there are respectively 256, 6249 and 11 R1,R2,-C=Se, R1,R2,-C=S and R1,R2,-C=Te structures that form hydrogen bonds, in which the N,N groups are majority. Except for C=S acceptor which can form a hydrogen bond with its C, C group, both C=Se and C=Te acceptors could form a hydrogen bond only with N,C and N,N groups. CSD analysis shows very similar d (norm) around -0.04 Å, while DFT-calculated interaction for N,C and N,N groups are also similar. Both interaction distances derived from CSD analysis and DFT-calculated interaction energies demonstrate that the acceptors form stable complexes with H-CF3. Besides hydrogen bonds, dispersion interactions are forces stabilizing the complexes since their contribution can reach 50%. Analysis of intra-molecular geometries and Ab Initio partial charges show that this bonding stems from resonance induced C<sup>δ+</sup>=X<sup>δ-</sup> dipoles. In many respects, both C=Se, C=S and C=Te are similar to C=S, with similar d (norm) and calculated interaction strengths.展开更多
Growing interest in non-covalent interactions involving chalcogen atoms has been ascribed to their importance in crystal engineering, molecular recognition and macromolecular edifices. The present study is dealing wit...Growing interest in non-covalent interactions involving chalcogen atoms has been ascribed to their importance in crystal engineering, molecular recognition and macromolecular edifices. The present study is dealing with chalcogen bonds involving divalent Sulphur, Selenium and Tellurium atoms, acting as sigma-hole donors, in small-molecule compounds using the Cambridge Structural Database (CSD) in conjunction with ab initio calculations. Results derived from CSD surveys and computational study revealed that nucleophiles formed complexes with the chalcogen-bond donors R1-X-R2 (X = S, Se or Te). The main forces stabilizing the complexes were chalcogen bonds, enhanced by dispersion interactions. Complexation pattern and energetics show that nucleophile bonding at divalent S, Se and Te atoms is a relatively strong and directed interaction. The bond consists of a charge transfer from a nucleophile atom lone pair to an X-R1 or X-R2 antibonding orbital.展开更多
The geometries and bonding characteristics of the first-row transition-metal carbene cations MCH 2 + were investigated byab initio molecular orbital theory (HF/LAYL2DZ). All of MCH 2 k are coplanar. In the closed shel...The geometries and bonding characteristics of the first-row transition-metal carbene cations MCH 2 + were investigated byab initio molecular orbital theory (HF/LAYL2DZ). All of MCH 2 k are coplanar. In the closed shell structures the C hlnds to M with double bonds:while in the open shell structures the partial double bonds are formed. because one of the σ and π orbitals is singly occupied. It is mainly the π-type overlap between the 2p x orbital of C and 4p x , 3d xx orbitals of M+ that forms the π orbitals. The dissociation energies of C—M bond appear in periodic trend from Sc to Cu. Most of the calculated band dissociation energies are close to the experimental ones.展开更多
基金This work was supported by the National Natural Science Foundation of China (No. 10574039)Henan Innovation Fund for University Prominent Research Talents (No. 2006KYCX002).
文摘The accurate dissociation energy and equilibrium geometry of the ball state of ^7LiH molecule is calculated using a symmetry-adapted-cluster configuration-interaction method in full active space. And the calculated results are 0.2580 eV and 0.1958 nm for the dissociation energy and equilibrium geometry, respectively. The whole potential energy curve for the b^3∏ state is also calculated over the internuclear separation range from about 0.10 to 0.54 nm. The results are fitted by the Murrell-Sorbie function. It is found that the Murrell-Sorbie function form, which is mainly used to fit the ground-state potential energy function, is well suitable for the excited triplet b^3∏ state. The vertical excitation energy from the ground state to the b^3∏ state is calculated to be 4.233 eV. Based on the analytic potential energy function, the harmonic frequency of 610.88 cm^-1 about this state is firstly estimated. Compared with other theoretical results, this work is the most complete effort to deal with the analytic potential energy function and the harmonic frequency of this state.
文摘Considerable interest in hydrogen bonding involving chalcogen has been growing since the IUPAC committee has redefined hydrogen bonding. Not only the focus is on unconventional acceptors, but also on donors not discussed before. It has been mentioned in previous studies that the proton of the H-C group could be involved in hydrogen bonding, but with conventional acceptors. In this study, we explored the ability of hydrogen bond formation of Se, S and Te acceptors with the H-C donor using Cambridge Structural Database in conjunction with Ab Initio calculations. In the CSD, there are respectively 256, 6249 and 11 R1,R2,-C=Se, R1,R2,-C=S and R1,R2,-C=Te structures that form hydrogen bonds, in which the N,N groups are majority. Except for C=S acceptor which can form a hydrogen bond with its C, C group, both C=Se and C=Te acceptors could form a hydrogen bond only with N,C and N,N groups. CSD analysis shows very similar d (norm) around -0.04 Å, while DFT-calculated interaction for N,C and N,N groups are also similar. Both interaction distances derived from CSD analysis and DFT-calculated interaction energies demonstrate that the acceptors form stable complexes with H-CF3. Besides hydrogen bonds, dispersion interactions are forces stabilizing the complexes since their contribution can reach 50%. Analysis of intra-molecular geometries and Ab Initio partial charges show that this bonding stems from resonance induced C<sup>δ+</sup>=X<sup>δ-</sup> dipoles. In many respects, both C=Se, C=S and C=Te are similar to C=S, with similar d (norm) and calculated interaction strengths.
文摘Growing interest in non-covalent interactions involving chalcogen atoms has been ascribed to their importance in crystal engineering, molecular recognition and macromolecular edifices. The present study is dealing with chalcogen bonds involving divalent Sulphur, Selenium and Tellurium atoms, acting as sigma-hole donors, in small-molecule compounds using the Cambridge Structural Database (CSD) in conjunction with ab initio calculations. Results derived from CSD surveys and computational study revealed that nucleophiles formed complexes with the chalcogen-bond donors R1-X-R2 (X = S, Se or Te). The main forces stabilizing the complexes were chalcogen bonds, enhanced by dispersion interactions. Complexation pattern and energetics show that nucleophile bonding at divalent S, Se and Te atoms is a relatively strong and directed interaction. The bond consists of a charge transfer from a nucleophile atom lone pair to an X-R1 or X-R2 antibonding orbital.
基金Project supported by the National Natural Science Foundation of China (Grant No. 29170070)
文摘The geometries and bonding characteristics of the first-row transition-metal carbene cations MCH 2 + were investigated byab initio molecular orbital theory (HF/LAYL2DZ). All of MCH 2 k are coplanar. In the closed shell structures the C hlnds to M with double bonds:while in the open shell structures the partial double bonds are formed. because one of the σ and π orbitals is singly occupied. It is mainly the π-type overlap between the 2p x orbital of C and 4p x , 3d xx orbitals of M+ that forms the π orbitals. The dissociation energies of C—M bond appear in periodic trend from Sc to Cu. Most of the calculated band dissociation energies are close to the experimental ones.