期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
基于声信号的离心泵故障诊断研究
1
作者 陈剑 姜涛 陈品 《电子测量与仪器学报》 CSCD 北大核心 2024年第5期169-177,共9页
各种原因使得工业现场设备状态监测的首选测量信号是声信号时,提出一种基于声信号的设备状态监测方法显得尤为必要。以某型离心泵为依据对象,对现场采集的声信号提取梅尔倒谱系数(MFCC)作为信号的初始特征,然后计算这些MFCC初始特征的... 各种原因使得工业现场设备状态监测的首选测量信号是声信号时,提出一种基于声信号的设备状态监测方法显得尤为必要。以某型离心泵为依据对象,对现场采集的声信号提取梅尔倒谱系数(MFCC)作为信号的初始特征,然后计算这些MFCC初始特征的散布熵(DE)值,并通过主成分分析法(PCA)对矩阵进行降维,从而构造特征矩阵。利用蝙蝠优化算法(BA)对支持向量机(SVM)的惩罚系数与核函数参数进行优化,对离心泵的多种故障工况开展诊断,并与多种诊断方法进行比较。实验结果表明,经过BA优化后的模型在诊断准确率上提高了21.7%;在该模型的基础上利用DE对MFCC提取的信号进行深度挖掘,使模型诊断的准确率提高2.05%。 展开更多
关键词 离心泵故障诊断 声信号 梅尔倒谱散布熵 蝙蝠优化算法 支持向量机
下载PDF
基于APSO-SSD-SVD的特高压换流站OLTC振动信号降噪方法
2
作者 骆钊 张涛 +3 位作者 阮彦俊 石延辉 林铭良 张杨 《电力系统保护与控制》 EI CSCD 北大核心 2024年第21期13-23,共11页
随着中国特高压交直流换流站的大规模投运,有载分接开关(on-load tap changer, OLTC)已成为特高压换流站中发生故障较多的设备之一。针对强背景噪声环境下特高压换流站OLTC故障特征难以提取的问题,提出一种基于自适应粒子群算法优化奇... 随着中国特高压交直流换流站的大规模投运,有载分接开关(on-load tap changer, OLTC)已成为特高压换流站中发生故障较多的设备之一。针对强背景噪声环境下特高压换流站OLTC故障特征难以提取的问题,提出一种基于自适应粒子群算法优化奇异谱分解和奇异值分解的方法。首先,利用自适应粒子群优化(adaptive particle swarm optimization, APSO)算法对奇异谱分解算法中的模态参数进行优化,选取最优分解模态数。其次,基于最大峭度准则选取最佳奇异谱分量。然后,确定最佳重构阶数,通过奇异值分解重构信号,从而达到信号降噪的目的。将所提方法应用于仿真信号和实验信号,结果表明所提方法的信噪比达到23.302,均方根误差仅为0.004,并且波形相似参数高达0.998,优于其他降噪方法。所提方法能够更有效地实现对特高压换流站OLTC振动信号的降噪,为辅助运维人员诊断OLTC状态提供参考。 展开更多
关键词 有载分接开关 自适应粒子群优化算法 奇异谱分解 奇异值分解 精细复合多尺度散布熵 信号降噪
下载PDF
基于HMFDE和t-SNE的旋转机械故障诊断方法
3
作者 尹久 张杰 《机电工程》 CAS 北大核心 2024年第6期1058-1067,共10页
针对旋转机械的故障特征提取较难,以及单一类型的特征无法全面反映故障特性的问题,提出了一种基于混合多尺度波动散布熵(HMFDE)、t分布-随机邻域嵌入(t-SNE)和郊狼优化算法(COA)优化极限学习机(ELM)的旋转机械故障诊断方法。首先,采用... 针对旋转机械的故障特征提取较难,以及单一类型的特征无法全面反映故障特性的问题,提出了一种基于混合多尺度波动散布熵(HMFDE)、t分布-随机邻域嵌入(t-SNE)和郊狼优化算法(COA)优化极限学习机(ELM)的旋转机械故障诊断方法。首先,采用特征加权提出了混合多尺度波动散布熵方法,并将其用于提取旋转机械振动信号的故障特征;随后,采用t-SNE方法对混合故障特征进行了特征降维,挑选出了最能够反映故障特性的特征子集,构建了敏感特征样本;最后,采用郊狼优化算法对极限学习机的输入权重和隐含层阈值进行了优化,完成了旋转机械的故障识别和分类;以齿轮箱和滚动轴承故障数据集为对象,对基于HMFDE、t-SNE和COA-ELM的故障诊断方法进行了实验,验证了方法的有效性。研究结果表明:采用HMFDE-t-SNE-CAO-ELM故障诊断方法可以取得100%的故障识别准确率,该方法能够有效地诊断旋转机械的不同故障类型和损伤;相较于基于单一类型特征的故障诊断方法,其准确率分别可以提高0.68%、22.42%、29.18%(齿轮箱)和1.43%、8.23%、23.67%(滚动轴承),虽然牺牲了一定的计算效率,但准确率得到了明显的提高;相较于其他常规故障分类器,COA-ELM的故障识别准确率具有明显的优势。 展开更多
关键词 旋转机械 故障诊断 齿轮箱 滚动轴承 混合多尺度波动散布熵 t分布-随机邻域嵌入 郊狼优化算法 极限学习机
下载PDF
基于时移多尺度波动散布熵和改进核极限学习机的水电机组故障诊断 被引量:1
4
作者 徐哲熙 刘婷 +3 位作者 任晟民 陈建林 吴凤娇 王斌 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第3期41-51,共11页
水电在能源供给结构改革中承担重要角色,随着风、光、潮汐等新型能源的不断接入,水电机组的负荷运行范围不断加宽,导致水电机组发生事故的概率增加,因此,开展水电机组智能故障诊断研究具有十分重要的现实意义。本文针对水电机组振动信... 水电在能源供给结构改革中承担重要角色,随着风、光、潮汐等新型能源的不断接入,水电机组的负荷运行范围不断加宽,导致水电机组发生事故的概率增加,因此,开展水电机组智能故障诊断研究具有十分重要的现实意义。本文针对水电机组振动信号中蕴含大量噪声信号,干扰故障诊断的问题,提出一种时移多尺度波动散布熵和改进核极限学习机相结合的水电机组故障诊断方法。首先,结合信息熵理论与时移思想,在多尺度波动散布熵的基础上,采用时移理论替代多尺度波动散布熵(MFDE)中传统的粗粒化过程,提出时移多尺度波动散布熵(TSMFDE),通过仿真实验,证明所提方法具有良好的时序长度鲁棒性、抗噪性及特征提取能力,解决了传统多尺度熵粗粒化不足的问题。然后,利用具有可移植性强、寻优能力强和收敛速度快等特征的算术优化算法(AOA)对核极限学习机(KELM)的正则化参数和核函数参数进行寻优,建立AOA-KELM分类器,解决了KELM超参数难以调节的问题。最终,通过转子试验台模拟实验,将TSMFDE提取的特征输入分类器中,完成模式识别工作。仿真结果表明,所提模型取得最高的诊断精度,达到了100.0%,相对于其他流行模型,本文所提模型展现了明显的优势,验证了所提模型的良好诊断精度。 展开更多
关键词 时移多尺度波动散布熵 核极限学习机 算术优化算法 水电机组 故障诊断
下载PDF
基于CMMFDE与多传感器信息融合的旋转机械故障诊断研究 被引量:1
5
作者 程志平 王潞红 +1 位作者 欧斌 吴军良 《机电工程》 CAS 北大核心 2024年第5期807-816,共10页
采用单一传感器采集的振动信号难以准确描述旋转机械动态特性,导致提取的故障特征无法准确辨识旋转机械故障。针对这一缺陷,提出了一种基于复合多元多尺度波动散布熵(CMMFDE)、多传感器信息融合和哈里斯鹰算法优化极限学习机(HHO-ELM)... 采用单一传感器采集的振动信号难以准确描述旋转机械动态特性,导致提取的故障特征无法准确辨识旋转机械故障。针对这一缺陷,提出了一种基于复合多元多尺度波动散布熵(CMMFDE)、多传感器信息融合和哈里斯鹰算法优化极限学习机(HHO-ELM)的旋转机械故障诊断方法。首先,引入复合多元粗粒化处理,提出了CMMFDE方法,避免了传统单变量分析方法只能处理单一通道振动信号而导致特征的表征性能不足的缺陷,增强了故障特征的表征性能;随后,利用布置在旋转机械不同部位的传感器收集了多种类型的信号,组成混合多通道信号,并进行了CMMFDE分析,构建了故障特征;最后,采用HHO对极限学习机的参数进行了自适应优化,并对特征样本进行了训练和测试,完成了旋转机械的故障识别工作;利用齿轮箱、离心泵两种典型的旋转机械数据集进行了实验分析。研究结果表明:该方法对多个通道的信号进行分析时,所获得的准确率达到了100%和98%,优于对单个通道信号进行分析时获得的准确率,同时CMMFDE方法的准确率和特征提取时间均优于精细复合多元多尺度熵(RCMMSE)、精细复合多元多尺度模糊熵(RCMMFE)、精细复合多元多尺度排列熵(RCMMPE)、多元多尺度波动散布熵(MMFDE)。 展开更多
关键词 旋转机械 故障诊断 齿轮箱 离心泵 复合多元多尺度波动散布熵 哈里斯鹰优化极限学习机
下载PDF
基于RCMDE和GWO-LSSVM的抗蛇行减振器故障诊断
6
作者 岑潮宇 代亮成 +1 位作者 池茂儒 赵明花 《机床与液压》 北大核心 2024年第21期199-205,共7页
针对高速列车抗蛇行减振器故障振动信号具有非线性、非平稳特征以及特征信号提取相对困难的问题,提出一种基于自适应噪声完备集合模态分解(CEEMDAN)与灰狼算法优化的最小二乘支持向量机(LSSVM)相结合的故障诊断方法。利用CEEMDAN方法分... 针对高速列车抗蛇行减振器故障振动信号具有非线性、非平稳特征以及特征信号提取相对困难的问题,提出一种基于自适应噪声完备集合模态分解(CEEMDAN)与灰狼算法优化的最小二乘支持向量机(LSSVM)相结合的故障诊断方法。利用CEEMDAN方法分解车辆的振动信号,得到振动信号的各模态分量(IMF),并计算IMF各分量的精细复合多尺度散布熵(RCMDE),组成每个样本下的特征向量,最后输入到利用灰狼优化算法(GWO)对LSSVM的惩罚系数和核函数参数迭代寻优以获得最优分类效果的LSSVM中进行故障诊断。试验结果表明:通过提取CEEMDAN各模态分量IMF的精细复合多尺度散布熵作为特征输入到GWO-LSSVM中具有很好的诊断效果,实现了抗蛇行减振器故障的有效判别,验证了该方法的可行性。 展开更多
关键词 抗蛇行减振器 精细复合多尺度散布熵 故障诊断 灰狼优化 最小二乘支持向量机
下载PDF
基于SORT映射的IRCMFDE在旋转机械故障诊断中的应用
7
作者 王潞红 邹平吉 《机电工程》 北大核心 2024年第1期11-21,共11页
针对旋转机械振动信号的强非线性和非平稳性,导致故障特征提取困难的问题,提出了一种基于SORT映射的改进精细复合多尺度波动散布熵(IRCMFDE)和蝙蝠算法优化的相关向量机(BA-RVM)的旋转机械故障诊断方法。首先,利用SORT映射函数替换了精... 针对旋转机械振动信号的强非线性和非平稳性,导致故障特征提取困难的问题,提出了一种基于SORT映射的改进精细复合多尺度波动散布熵(IRCMFDE)和蝙蝠算法优化的相关向量机(BA-RVM)的旋转机械故障诊断方法。首先,利用SORT映射函数替换了精细复合多尺度波动散布熵(RCMFDE)方法的正态累积分布函数,同时对RCMFDE方法的粗粒化方式进行了改进,提出了基于SORT映射的IRCMFDE方法;随后,利用IRCMFDE方法提取了旋转机械振动信号的故障特征,构造了故障特征集;最后,采用BA-RVM分类器对旋转机械的故障类型进行了智能化的识别和分类;将基于IRCMFDE和BA-RVM的故障诊断方法应用于滚动轴承、离心泵和齿轮箱的实验数据分析,并将其与现有故障诊断方法进行了对比分析。研究结果表明:基于IRCMFDE和BA-RVM的故障诊断方法能够有效地识别旋转机械的故障状态,识别准确率分别达到了100%、98%和99%,相比基于RCMFDE、精细复合多尺度熵、精细复合多尺度模糊熵、精细复合多尺度排列熵和精细复合多尺度散布熵的故障特征提取方法,该故障诊断方法的效率和平均识别准确率均优于对比方法,其更适合应用于旋转机械的在线实时故障监测。 展开更多
关键词 改进精细复合多尺度波动散布熵 SORT映射 蝙蝠算法优化的相关向量机 旋转机械 故障分类识别
下载PDF
基于二维多尺度时频散布熵的滚动轴承故障诊断方法 被引量:3
8
作者 郑近德 李嘉绮 +2 位作者 潘海洋 童靳于 刘庆运 《振动与冲击》 EI CSCD 北大核心 2023年第8期215-225,共11页
多尺度散布熵(multi-scale dispersion entropy,MDE 1D)是一种有效衡量一维振动信号复杂性特征的非线性动力学分析法,但其仅能反映振动信号时域中的复杂性特征,无法完整反映振动信号频域的非线性动力学信息。为此,在二维散布熵(two-dime... 多尺度散布熵(multi-scale dispersion entropy,MDE 1D)是一种有效衡量一维振动信号复杂性特征的非线性动力学分析法,但其仅能反映振动信号时域中的复杂性特征,无法完整反映振动信号频域的非线性动力学信息。为此,在二维散布熵(two-dimensional dispersion entropy,DE_(2D))的基础上,提出二维时频散布熵(two-dimensional time-frequency dispersion entropy,TFDE_(2D))用于衡量时间序列的时频复杂性特征。同时,为更完整地反映时频分布在不同尺度下的复杂信息,受多尺度粗粒化启发,将传统粗粒化方法拓展到二维多尺度粗粒化,提出了二维多尺度时频散布熵(two-dimensional multi-scale time-frequency dispersion entropy,MTFDE_(2D)),用来量度振动信号时频分布的多尺度复杂性特征。在此基础上,将其应用于滚动轴承故障诊断中的非线性特征提取,提出一种基于MTFDE_(2D)和萤火虫优化支持向量机的滚动轴承智能诊断方法。最后,将所提方法应用于滚动轴承试验数据分析,并与现有方法进行对比。结果表明,所提方法不仅能有效地提取故障特征,实现不同轴承故障类型和故障程度的有效诊断,且诊断效果优于对比法。 展开更多
关键词 时频散布熵 多尺度时频散布熵 滚动轴承 萤火虫优化支持向量机 故障诊断
下载PDF
基于声振信号融合的IRCMMDE离心泵损伤检测方法 被引量:2
9
作者 陆春元 焦洪宇 《机电工程》 CAS 北大核心 2023年第6期952-959,共8页
离心泵早期的损伤特征比较微弱,难以有效提取其故障特征。针对这一问题,提出了一种基于声振信号融合的改进精细复合多元多尺度散布熵(IRCMMDE)和GWO-SVM的离心泵损伤检测方法。首先,利用多个传感器收集了离心泵在不同损伤状态下的声音... 离心泵早期的损伤特征比较微弱,难以有效提取其故障特征。针对这一问题,提出了一种基于声振信号融合的改进精细复合多元多尺度散布熵(IRCMMDE)和GWO-SVM的离心泵损伤检测方法。首先,利用多个传感器收集了离心泵在不同损伤状态下的声音和振动信号,并将声音和振动信号进行了融合,以充分利用不同类型信号中所蕴含的损伤特征信息;随后,针对多元多尺度散布熵(MMDE)不稳定的缺陷,对MMDE的粗粒化处理进行了优化,提出了改进精细复合多元多尺度散布熵(IRCMMDE)的复杂性测量指标;接着,利用IRCMMDE对声振融合信号进行了损伤特征提取,构建了各个损伤状态下的特征矩阵;最后,利用灰狼算法优化的支持向量机分类器,对各个损伤状态下的特征矩阵进行了识别,得到了最终的离心泵损伤检测结论。研究结果表明:采用基于声振信号融合的离心泵损伤检测方法,其最高可达到99.2%的故障识别准确率,相比于基于MMDE和RCMMDE的损伤检测方法,其能够更准确地识别出离心泵的损伤;该方法还能有效缓解单一信号检测时的不确定性,并且在多次实验验证下,其仍具有很高的检测精度。 展开更多
关键词 声振信号融合 离心泵损伤检测 改进精细复合多元多尺度散布熵 灰狼算法 支持向量机
下载PDF
基于参数优化VMD和散布熵的高压油泵故障诊断 被引量:5
10
作者 许佳 胡建村 +3 位作者 秦慈伟 陆宁云 姜斌 金江善 《内燃机学报》 EI CAS CSCD 北大核心 2023年第2期166-174,共9页
针对现有基于时域特征的高压油泵故障诊断准确率低的问题,笔者提出一种参数优化变分模态分解(VMD)算法和散布熵的特征提取方法,并采用支持向量机(SVM)进行故障诊断.首先,基于对高压油泵工作原理及典型故障的分析,利用AMESim平台搭建高... 针对现有基于时域特征的高压油泵故障诊断准确率低的问题,笔者提出一种参数优化变分模态分解(VMD)算法和散布熵的特征提取方法,并采用支持向量机(SVM)进行故障诊断.首先,基于对高压油泵工作原理及典型故障的分析,利用AMESim平台搭建高压油泵仿真模型进行故障模拟和信号采集.然后,针对VMD效果受限于分解个数和惩罚因子选取的问题,采用改进灰狼优化(IGWO)算法对VMD进行参数寻优.通过计算各模态的散布熵值形成故障特征向量,最后,采用SVM对故障特征向量进行训练和诊断,实现高压油泵的故障诊断.该方法的故障诊断准确率可达到95%以上,能有效地实现高压油泵故障诊断. 展开更多
关键词 船用柴油机 高压油泵 故障诊断 改进灰狼优化 变分模态分解 散布熵
下载PDF
基于变分模态分解和精细复合多尺度均值散布熵的轴承故障诊断 被引量:8
11
作者 张婕 张梅 陈万利 《机电工程》 CAS 北大核心 2023年第5期682-690,共9页
为充分提取非线性、非平稳的轴承故障信号特征信息,进而提高轴承故障诊断精度,提出了一种基于变分模态分解(VMD)和精细复合多尺度均值散布熵(RCMMDE)的轴承故障诊断方法(算法)。首先,使用VMD将轴承故障振动信号分解为了多个模态分量,通... 为充分提取非线性、非平稳的轴承故障信号特征信息,进而提高轴承故障诊断精度,提出了一种基于变分模态分解(VMD)和精细复合多尺度均值散布熵(RCMMDE)的轴承故障诊断方法(算法)。首先,使用VMD将轴承故障振动信号分解为了多个模态分量,通过评估原信号与模态分量信号的互相关程度,筛选了其有效模态,并对其进行了信号重构,实现了故障信号的降噪处理目的;然后,使用精细复合均值化代替了传统粗粒化方法,利用RCMMDE方法提取了重构信号的多尺度熵值,构成了特征样本集;最后,通过鲸鱼算法(WOA)对支持向量机(SVM)进行了超参数寻优,构建了最优的故障检测模型,并将特征样本集输入到WOA-SVM模型中进行了轴承故障诊断,并通过实验评估验证了模型的有效性。研究结果表明:该模型准确率达到99.67%,精确率、召回率等各项性能指标均在99%以上,并具有很强的鲁棒性。 展开更多
关键词 轴承故障诊断 变分模态分解 精细复合多尺度均值散布熵 鲸鱼算法 支持向量机 超参数寻优
下载PDF
基于混合特征提取和PSO-ELM的电机故障诊断 被引量:1
12
作者 谢锋云 赏鉴栋 +1 位作者 汪淦 王玲岚 《组合机床与自动化加工技术》 北大核心 2023年第5期106-109,共4页
针对单一特征提取方法无法有效提取电机故障特征,提出了一种基于混合特征提取与粒子群优化极限学习机(PSO-ELM)相结合的电机故障诊断方法。通过搭建电机故障实验平台,获取三相异步电机不同状态振动信号,利用变分模态分解(VMD)获取反映... 针对单一特征提取方法无法有效提取电机故障特征,提出了一种基于混合特征提取与粒子群优化极限学习机(PSO-ELM)相结合的电机故障诊断方法。通过搭建电机故障实验平台,获取三相异步电机不同状态振动信号,利用变分模态分解(VMD)获取反映信号能量分布特点的能量占比和能量熵特征,并与反映时间序列不同尺度复杂程度的多尺度散布熵(MDE)特征组成混合特征向量,使用PSO-ELM完成电机不同状态的识别。结果表明,所提方法20次测试的平均识别率为98.92%,能有效提取电机故障特征。 展开更多
关键词 故障诊断 粒子群优化 极限学习机 变分模态分解 多尺度散布熵
下载PDF
基于CEEMDAN-MFDE-HHO-SVM的机载燃油泵故障辨识 被引量:1
13
作者 刘军龙 俞凯耀 张相春 《机电工程》 CAS 北大核心 2023年第10期1616-1623,共8页
针对机载燃油泵振动信号的有效分量相互耦合、故障特征提取困难,进而导致故障识别准确率低的问题,提出了一种基于自适应噪声完备经验模态分解(CEEMDAN)、多尺度波动散布熵(MFDE)和哈里斯鹰算法(HHO)优化支持向量机(SVM)的机载燃油泵故... 针对机载燃油泵振动信号的有效分量相互耦合、故障特征提取困难,进而导致故障识别准确率低的问题,提出了一种基于自适应噪声完备经验模态分解(CEEMDAN)、多尺度波动散布熵(MFDE)和哈里斯鹰算法(HHO)优化支持向量机(SVM)的机载燃油泵故障辨识方法(CEEMDAN-MFDE-HHO-SVM)。首先,采用CEEMDAN方法对机载燃油泵振动信号进行了自适应分解,生成了一组从低频到高频分布的本征模态函数(IMF),并选择包含冲击信息较多的IMF分量进行了信号重构,得到了噪声含量较低的信号;然后,采用MFDE方法计算了低噪信号的熵值,构造了表征样本故障属性的特征矩阵;最后,采用HHO算法对SVM的关键参数进行了优化,以构造基于HHO-SVM模型的多故障分类器,对机载燃油泵的故障进行了辨识;基于实测机载燃油泵故障数据集,将CEEMDAN-MFDE-HHO-SVM方法与其他组合方法进行了对比分析。研究结果表明:该故障辨识模型的故障分类准确率达到了100%,在信号处理、熵值特征提取和分类器方面都优于其他对比方法;该模型不仅具有更高的分类准确率,而且具有更优异的效率,后续可以将其推广到其他机械设备的故障辨识中。 展开更多
关键词 故障识别准确率 自适应噪声完备经验模态分解 多尺度波动散布熵 哈里斯鹰优化 支持向量机
下载PDF
精细复合多尺度波动散布熵在液压泵故障诊断中的应用 被引量:18
14
作者 姜万录 赵亚鹏 +1 位作者 张淑清 李满 《振动与冲击》 EI CSCD 北大核心 2022年第8期7-16,共10页
液压泵振动信号具有非线性、非平稳性的特点,熵算法在该类信号分析方面有着独到的优势,但传统的熵算法在液压泵振动信号特征提取中有计算速度慢、熵值不准确、不稳定等不足,为了更有效地提取故障特征信息并提高故障诊断准确性,将精细复... 液压泵振动信号具有非线性、非平稳性的特点,熵算法在该类信号分析方面有着独到的优势,但传统的熵算法在液压泵振动信号特征提取中有计算速度慢、熵值不准确、不稳定等不足,为了更有效地提取故障特征信息并提高故障诊断准确性,将精细复合多尺度波动散布熵(refined composite multiscale fluctuation dispersion entropy,RCMFDE)引入到液压泵的故障特征提取中,提出了一种基于RCMFDE和粒子群优化支持向量机结合的液压泵故障诊断方法。计算不同故障振动信号的RCMFDE,并选取合适尺度下的多个RCMFDE值作为特征向量形成特征样本,输入粒子群优化支持向量机中进行故障分类识别。通过仿真信号和液压泵故障实测信号进行分析,并将所提出的方法与基于多尺度样本熵(multiscale sample entropy,MSE)、多尺度排列熵(multiscale permutation entropy,MPE)、多尺度符号动态熵(multiscale symbolic dynamic entropy,MSDE)、多尺度散布熵(multiscale dispersion entropy,MDE)、精细复合多尺度散布熵(refined composite multiscale dispersion entropy,RCMDE)、多尺度波动散布熵(multiscale fluctuation dispersion entropy,MFDE)的故障特征提取方法进行对比。试验结果表明,该方法能够更加准确地识别多类液压泵故障并能对液压泵性能退化程度进行有效评估。 展开更多
关键词 波动散布熵 精细复合多尺度波动散布熵(RCMFDE) 粒子群优化支持向量机 故障诊断 液压泵
下载PDF
基于优化VMD复合多尺度散布熵及LSTM的风力发电机齿轮箱故障诊断方法研究 被引量:12
15
作者 王宏伟 孙文磊 +1 位作者 张小栋 何丽 《太阳能学报》 EI CAS CSCD 北大核心 2022年第4期288-295,共8页
以风力发电机齿轮箱加速度信号为研究对象,提出一种数据驱动的风力发电机齿轮箱故障诊断方法,该方法以灰狼优化的变分模态分解方法(AGWO-VMD)、复合多尺度规范化散布熵(NCMDE)及长短期记忆网络(LSTM)为基础,实现齿轮箱故障的快速诊断。... 以风力发电机齿轮箱加速度信号为研究对象,提出一种数据驱动的风力发电机齿轮箱故障诊断方法,该方法以灰狼优化的变分模态分解方法(AGWO-VMD)、复合多尺度规范化散布熵(NCMDE)及长短期记忆网络(LSTM)为基础,实现齿轮箱故障的快速诊断。首先将时域信号转换至角域;然后通过AGWO-VMD方法对角域信号进行自适应分解,并采用NCMDE算法提取分解后及原始信号中的故障特征构成特征向量;最后利用LSTM模型对特征向量进行智能识别与分类。对实际采集的6种故障齿轮信号进行测试与验证,试验结果表明该方法能快速有效区分齿轮故障类型。 展开更多
关键词 风力机 齿轮箱 故障检测 灰狼优化算法 变分模态分解 复合多尺度规范化散布熵 长短期记忆网络
下载PDF
基于EWT-OPRCMDE-ELM的风电机组齿轮箱故障诊断研究 被引量:5
16
作者 李辉 李宣 +2 位作者 贾嵘 罗兴琦 白亮 《自动化仪表》 CAS 2021年第11期12-19,共8页
针对复杂运行工况和强背景噪声下风电机组齿轮箱故障特征提取和故障模式识别困难的问题。提出一种经验小波变换(EWT)、最优参数精细复合多尺度散布熵(OPRCMDE)和极限学习机(ELM)相结合的故障诊断方法。首先,利用经验小波变换将原始振动... 针对复杂运行工况和强背景噪声下风电机组齿轮箱故障特征提取和故障模式识别困难的问题。提出一种经验小波变换(EWT)、最优参数精细复合多尺度散布熵(OPRCMDE)和极限学习机(ELM)相结合的故障诊断方法。首先,利用经验小波变换将原始振动信号分解为若干子模态分量(EWF),通过相关系数选取EWF进行信号重构。其次,提取重构信号的最优参数精细复合多尺度散布熵构成故障特征向量,并通过Relief-F算法对特征向量作进一步筛选,剔除冗余。最后,利用极限学习机进行故障诊断。试验分析结果表明,所提方法能够有效提取区分度明显的风电机组齿轮箱故障特征,实现了齿轮箱故障的准确识别。该研究为风电机组齿轮箱故障诊断研究提供了参考,同时具有一定的实际工程应用价值。 展开更多
关键词 风电机组齿轮箱 经验小波变换 信号重构 特征提取 最优参数精细复合多尺度散布熵 Relief-F 极限学习机 故障诊断
下载PDF
基于HRCMFDE、LS、BA-SVM的行星齿轮箱故障诊断 被引量:3
17
作者 庄敏 李革 +1 位作者 范智军 孔德成 《机电工程》 CAS 北大核心 2022年第11期1535-1543,共9页
针对行星齿轮箱的特征提取以及故障识别问题,提出了一种基于混合精细复合多尺度波动散布熵(HRCMFDE)特征提取、拉普拉斯分数(LS)特征降维优化和蝙蝠算法优化支持向量机(BA-SVM)故障识别的行星齿轮箱故障诊断方法。首先,提出了一种新的... 针对行星齿轮箱的特征提取以及故障识别问题,提出了一种基于混合精细复合多尺度波动散布熵(HRCMFDE)特征提取、拉普拉斯分数(LS)特征降维优化和蝙蝠算法优化支持向量机(BA-SVM)故障识别的行星齿轮箱故障诊断方法。首先,提出了一种新的时间序列复杂度测量方法—HRCMFDE(其由5种不同粗粒化方式的RCMFDE组成,具备更全面和可靠的特征提取性能),用于从振动信号中挖掘出反映行星齿轮箱状态的故障信息,构成初始的混合故障特征;然后,考虑到由HRCMFDE组成的故障特征具有较高的维数和冗余,利用LS对初始特征进行了优化,生成了低维的敏感特征;最后,利用基于蝙蝠算法优化的支持向量机,对行星齿轮系不同故障特征向量进行了训练和分类,利用真实故障数据集对基于HRCMFDE、LS、BA-SVM的方法进行了验证。研究结果表明:利用行星齿轮箱数据集对该方案进行的有效性实验,能够准确地识别出齿轮箱的不同故障,其单次分类的准确率达到了98.13%,多次分类的平均准确率也优于对比方法;该结果验证了基于混合精细复合多尺度波动散布熵特征提取的有效性,采用该方法能够对行星齿轮箱的故障进行诊断。 展开更多
关键词 特征提取 特征降维优化 故障分类识别 混合精细复合多尺度波动散布熵 拉普拉斯分数 蝙蝠算法优化支持向量机
下载PDF
基于VMD散布熵与改进灰狼优化SVDD的轴承半监督故障诊断研究 被引量:20
18
作者 付文龙 谭佳文 王凯 《振动与冲击》 EI CSCD 北大核心 2019年第22期190-197,共8页
为充分挖掘未标记样本所蕴含的有效信息,进而提升诊断精度,研究提出一种基于变分模态分解(VMD)散布熵与改进灰狼优化支持向量数据描述(SVDD)的轴承半监督故障诊断方法。采用中心频率观察法确定VMD分解模态参数K,进而将原始信号分解为一... 为充分挖掘未标记样本所蕴含的有效信息,进而提升诊断精度,研究提出一种基于变分模态分解(VMD)散布熵与改进灰狼优化支持向量数据描述(SVDD)的轴承半监督故障诊断方法。采用中心频率观察法确定VMD分解模态参数K,进而将原始信号分解为一系列本征模态函数并计算各分量的散布熵值,构成测试样本和部分标记的训练样本;再由半监督模糊C均值(SSFCM)聚类对训练样本进行聚类分析,从而对所得聚类簇进行SVDD建模,同时采用k近邻准则进行决策优化,并由所提自适应变异灰狼算法优化SVDD模型参数;将基于最优参数训练的改进决策SVDD模型用于测试样本的故障模式识别。试验分析和对比结果表明,所提方法具有较好的诊断性能。 展开更多
关键词 变分模态分解 散布熵 支持向量数据描述 自适应变异灰狼算法 半监督模糊C均值 故障诊断
下载PDF
基于VMD-DE的坦克行星变速箱故障诊断方法研究 被引量:31
19
作者 吴守军 冯辅周 +1 位作者 吴春志 李本 《振动与冲击》 EI CSCD 北大核心 2020年第10期170-179,共10页
为了提高坦克行星变速箱齿轮故障模式识别准确率,将变分模态分解(VMD)与散布熵(DE)结合提出故障特征提取新方法。利用波形法确定VMD分解层数,VMD分解振动信号得到一组固有模态分量(IMF);根据归一化互信息准则筛选若干IMF重构信号,计算... 为了提高坦克行星变速箱齿轮故障模式识别准确率,将变分模态分解(VMD)与散布熵(DE)结合提出故障特征提取新方法。利用波形法确定VMD分解层数,VMD分解振动信号得到一组固有模态分量(IMF);根据归一化互信息准则筛选若干IMF重构信号,计算重构信号的散布熵;将重构信号散布熵作为特征值输入到粒子群优化(PSO)的多分类支持向量机(SVM)中实现故障模式识别。通过对坦克行星变速箱的正常、行星轮故障和太阳轮故障三种状态进行模式识别,分类准确率达到100%,且计算时间较短。与基于原始振动信号DE、VMD-SE(样本熵)、VMD-PE(排列熵)及EMD-DE(经验模态分解与DE结合)等方法比较,综合考虑准确率和计算时间两个因素,基于VMD-DE的方法故障诊断性能最佳。 展开更多
关键词 行星变速箱 故障诊断 变分模态分解(VMD) 散布熵(DE) 粒子群优化(PSO) 支持向量机(SVM)
下载PDF
改进多元层次波动色散熵及其在滚动轴承故障诊断中的应用 被引量:12
20
作者 周付明 杨小强 +2 位作者 申金星 刘武强 刘小林 《振动与冲击》 EI CSCD 北大核心 2021年第22期167-174,共8页
针对滚动轴承振动信号故障特征难以提取以及单通道振动信号分析易存在故障信息缺漏的问题,提出一种新的衡量多通道时间序列动态特征的方法——改进多元层次波动色散熵(modified multivariate hierarchical fluctuation dispersion entro... 针对滚动轴承振动信号故障特征难以提取以及单通道振动信号分析易存在故障信息缺漏的问题,提出一种新的衡量多通道时间序列动态特征的方法——改进多元层次波动色散熵(modified multivariate hierarchical fluctuation dispersion entropy,MMHFDE),将其用于提取滚动轴承多通道振动信号中的故障特征,在此基础上提出一种基于MMHFDE,最大相关最小冗余(max-relevance and min-redundancy,mRMR)和粒子群优化核极限学习机(particle swarm optimization kernel extreme learning machine,PSO-KELM)的滚动轴承故障诊断新方法。使用MMHFDE提取滚动轴承不同状态的故障特征,而后采用mRMR从得到的故障特征中筛选敏感特征构成敏感特征向量;将敏感特征向量输入到基于PSO-KELM构建的故障分类器中进行故障识别。由试验结果可知,提出的方法可以有效识别滚动轴承不同故障状态。 展开更多
关键词 改进多元层次波动色散熵(MMHFDE) 最大相关最小冗余(mRMR) 粒子群优化核极限学习机(PSO-KELM) 滚动轴承 故障诊断
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部