Software testing has been attracting a lot of attention for effective software development.In model driven approach,Unified Modelling Language(UML)is a conceptual modelling approach for obligations and other features ...Software testing has been attracting a lot of attention for effective software development.In model driven approach,Unified Modelling Language(UML)is a conceptual modelling approach for obligations and other features of the system in a model-driven methodology.Specialized tools interpret these models into other software artifacts such as code,test data and documentation.The generation of test cases permits the appropriate test data to be determined that have the aptitude to ascertain the requirements.This paper focuses on optimizing the test data obtained from UML activity and state chart diagrams by using Basic Genetic Algorithm(BGA).For generating the test cases,both diagrams were converted into their corresponding intermediate graphical forms namely,Activity Diagram Graph(ADG)and State Chart Diagram Graph(SCDG).Then both graphs will be combined to form a single graph called,Activity State Chart Diagram Graph(ASCDG).Both graphs were then joined to create a single graph known as the Activity State Chart Diagram Graph(ASCDG).Next,the ASCDG will be optimized using BGA to generate the test data.A case study involving a withdrawal from the automated teller machine(ATM)of a bank was employed to demonstrate the approach.The approach successfully identified defects in various ATM functions such as messaging and operation.展开更多
Software testing is one of the most crucial and analytical aspect to assure that developed software meets pre- scribed quality standards. Software development process in- vests at least 50% of the total cost in softwa...Software testing is one of the most crucial and analytical aspect to assure that developed software meets pre- scribed quality standards. Software development process in- vests at least 50% of the total cost in software testing process. Optimum and efficacious test data design of software is an important and challenging activity due to the nonlinear struc- ture of software. Moreover, test case type and scope deter- mines the quality of test data. To address this issue, software testing tools should employ intelligence based soft comput- ing techniques like particle swarm optimization (PSO) and genetic algorithm (GA) to generate smart and efficient test data automatically. This paper presents a hybrid PSO and GA based heuristic for automatic generation of test suites. In this paper, we described the design and implementation of the proposed strategy and evaluated our model by performing ex- periments with ten container classes from the Java standard library. We analyzed our algorithm statistically with test ad- equacy criterion as branch coverage. The performance ade- quacy criterion is taken as percentage coverage per unit time and percentage of faults detected by the generated test data. We have compared our work with the heuristic based upon GA, PSO, existing hybrid strategies based on GA and PSO and memetic algorithm. The results showed that the test case generation is efficient in our work.展开更多
基金support from the Deanship of Scientific Research,University of Hail,Saudi Arabia through the project Ref.(RG-191315).
文摘Software testing has been attracting a lot of attention for effective software development.In model driven approach,Unified Modelling Language(UML)is a conceptual modelling approach for obligations and other features of the system in a model-driven methodology.Specialized tools interpret these models into other software artifacts such as code,test data and documentation.The generation of test cases permits the appropriate test data to be determined that have the aptitude to ascertain the requirements.This paper focuses on optimizing the test data obtained from UML activity and state chart diagrams by using Basic Genetic Algorithm(BGA).For generating the test cases,both diagrams were converted into their corresponding intermediate graphical forms namely,Activity Diagram Graph(ADG)and State Chart Diagram Graph(SCDG).Then both graphs will be combined to form a single graph called,Activity State Chart Diagram Graph(ASCDG).Both graphs were then joined to create a single graph known as the Activity State Chart Diagram Graph(ASCDG).Next,the ASCDG will be optimized using BGA to generate the test data.A case study involving a withdrawal from the automated teller machine(ATM)of a bank was employed to demonstrate the approach.The approach successfully identified defects in various ATM functions such as messaging and operation.
文摘Software testing is one of the most crucial and analytical aspect to assure that developed software meets pre- scribed quality standards. Software development process in- vests at least 50% of the total cost in software testing process. Optimum and efficacious test data design of software is an important and challenging activity due to the nonlinear struc- ture of software. Moreover, test case type and scope deter- mines the quality of test data. To address this issue, software testing tools should employ intelligence based soft comput- ing techniques like particle swarm optimization (PSO) and genetic algorithm (GA) to generate smart and efficient test data automatically. This paper presents a hybrid PSO and GA based heuristic for automatic generation of test suites. In this paper, we described the design and implementation of the proposed strategy and evaluated our model by performing ex- periments with ten container classes from the Java standard library. We analyzed our algorithm statistically with test ad- equacy criterion as branch coverage. The performance ade- quacy criterion is taken as percentage coverage per unit time and percentage of faults detected by the generated test data. We have compared our work with the heuristic based upon GA, PSO, existing hybrid strategies based on GA and PSO and memetic algorithm. The results showed that the test case generation is efficient in our work.