期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于兴趣函数的多样化Option-Critic算法
1
作者
栗军伟
刘全
+1 位作者
黄志刚
徐亚鹏
《计算机研究与发展》
EI
2024年第12期3108-3120,共13页
Option框架作为分层强化学习的一种常用时序抽象方法,允许智能体在不同的时间尺度上学习策略,可以有效解决稀疏奖励问题.为了保证Option可以引导智能体访问更多的状态空间,一些方法通过引入基于互信息的内部奖励和终止函数来提升Option...
Option框架作为分层强化学习的一种常用时序抽象方法,允许智能体在不同的时间尺度上学习策略,可以有效解决稀疏奖励问题.为了保证Option可以引导智能体访问更多的状态空间,一些方法通过引入基于互信息的内部奖励和终止函数来提升Option内部策略的多样性.但这会导致算法学习速度慢和内部策略的知识迁移能力低等问题,严重影响了算法性能.针对以上问题,提出基于兴趣函数优化的多样化Option-Critic算法(diversity-enriched Option-Critic algorithm with interest functions,DEOC-IF).该算法在多样化Option-Critic算法(diversity-enriched Option-Critic,DEOC)的基础上,通过引入兴趣函数约束上层策略对Option内部策略的选择,既保证了Option集合的多样性,又使得学习到的内部策略可以关注状态空间的不同区域,有利于提高算法的知识迁移能力,加快学习速度.此外,DEOC-IF算法引入一种新的兴趣函数更新梯度,有利于提高算法的探索能力.为了验证算法的有效性和知识迁移能力,分别在4房间导航任务、Mujoco和MiniWorld实验环境中,将DEOC-IF算法与其他最新算法进行对比实验.结果表明,DEOC-IF算法具有更好的性能优势和策略迁移能力.
展开更多
关键词
强化学习
时序抽象
option框架
兴趣函数
option
-Critic算法
下载PDF
职称材料
题名
基于兴趣函数的多样化Option-Critic算法
1
作者
栗军伟
刘全
黄志刚
徐亚鹏
机构
苏州大学计算机科学与技术学院
出处
《计算机研究与发展》
EI
2024年第12期3108-3120,共13页
基金
国家自然科学基金项目(62376179,61772355,61702055,61876217,62176175)
江苏高校优势学科建设工程资助项目。
文摘
Option框架作为分层强化学习的一种常用时序抽象方法,允许智能体在不同的时间尺度上学习策略,可以有效解决稀疏奖励问题.为了保证Option可以引导智能体访问更多的状态空间,一些方法通过引入基于互信息的内部奖励和终止函数来提升Option内部策略的多样性.但这会导致算法学习速度慢和内部策略的知识迁移能力低等问题,严重影响了算法性能.针对以上问题,提出基于兴趣函数优化的多样化Option-Critic算法(diversity-enriched Option-Critic algorithm with interest functions,DEOC-IF).该算法在多样化Option-Critic算法(diversity-enriched Option-Critic,DEOC)的基础上,通过引入兴趣函数约束上层策略对Option内部策略的选择,既保证了Option集合的多样性,又使得学习到的内部策略可以关注状态空间的不同区域,有利于提高算法的知识迁移能力,加快学习速度.此外,DEOC-IF算法引入一种新的兴趣函数更新梯度,有利于提高算法的探索能力.为了验证算法的有效性和知识迁移能力,分别在4房间导航任务、Mujoco和MiniWorld实验环境中,将DEOC-IF算法与其他最新算法进行对比实验.结果表明,DEOC-IF算法具有更好的性能优势和策略迁移能力.
关键词
强化学习
时序抽象
option框架
兴趣函数
option
-Critic算法
Keywords
reinforcement learning
temporal abstractions
option
framework
interest function
option
-Critic algorithm
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于兴趣函数的多样化Option-Critic算法
栗军伟
刘全
黄志刚
徐亚鹏
《计算机研究与发展》
EI
2024
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部