Optoelectronic systems represent the gold standard of technologies used in the motion analysis for the evaluation of kinematics. Trials, a specialty of mountain biking, differ a lot from other cycling specialties, bec...Optoelectronic systems represent the gold standard of technologies used in the motion analysis for the evaluation of kinematics. Trials, a specialty of mountain biking, differ a lot from other cycling specialties, because in addition to pedaling, they require jumping techniques to overcome obstacles that involve the whole body. In this sport, more than in others, the evaluation of technical movements using optoelectronic systems goes far beyond simply assessing the biomechanics of pedaling or the correct positioning on the bike. Starting from a previous study conducted with video analysis technique applied to the lateral jumping technique, two versions of this technique were compared, considering the kinematics of the act, taking into account both the data relating the subject and the bicycle. The joint angles of the lower limbs and the angles described by the bicycle on the three space plane were considered. The major differences have been found in the "leap over" phase, about the bending of the lower limbs and the angles described by the bicycle.展开更多
In recent years,significant progress has been achieved in the design and fabrication of stretchable optoelectronic devices.In general,stretchability has been achieved through geometrical modifications of device compon...In recent years,significant progress has been achieved in the design and fabrication of stretchable optoelectronic devices.In general,stretchability has been achieved through geometrical modifications of device components,such as with serpentine interconnects or buckled substrates.However,the local stiffness of individual pixels and the limited pixel density of the array have impeded further advancements in stretchable optoelectronics.Therefore,intrinsically stretch-able optoelectronics have been proposed as an alternative approach.Herein,we review the recent advances in soft elec-tronic materials for application in intrinsically stretchable optoelectronic devices.First,we introduce various intrinsically stretchable electronic materials,comprised of electronic fillers,elastomers,and surfactants,and exemplify different in-trinsically stretchable conducting and semiconducting composites.We also describe the processing methods used to fabricate the electrodes,interconnections,charge transport layers,and optically active layers used in intrinsically stretch-able optoelectronic devices.Subsequently,we review representative examples of intrinsically stretchable optoelectronic devices,including light-emitting capacitors,light-emitting diodes,photodetectors,and photovoltaics.Finally,we briefly discuss intrinsically stretchable integrated optoelectronic systems.展开更多
Photodynamic therapy(PDT)is attracting attention as a next-generation cancer treatment that can selectively destroy malignant tissues,exhibit fewer side effects,and lack pain during treatments.Implantable PDT systems ...Photodynamic therapy(PDT)is attracting attention as a next-generation cancer treatment that can selectively destroy malignant tissues,exhibit fewer side effects,and lack pain during treatments.Implantable PDT systems have recently been developed to resolve the issues of bulky and expensive conventional PDT systems and to implement continuous and repetitive treatment.Existing implantable PDT systems,however,are not able to perform multiple functions simultaneously,such as modulating light intensity,measuring,and transmitting tumor-related data,resulting in the complexity of cancer treatment.Here,we introduce a flexible and fully implantable wireless optoelectronic system capable of continuous and effective cancer treatment by fusing PDT and hyperthermia and enabling tumor size monitoring in real-time.This system exploits micro inorganic light-emitting diodes(μ-LED)that emit light with a wavelength of 624 nm,designed not to affect surrounding normal tissues by utilizing a fully programmable light intensity ofμ-LED and precisely monitoring the tumor size by Si phototransistor during a long-term implantation(2–3 weeks).The superiority of simultaneous cancer treatment and tumor size monitoring capabilities of our system operated by wireless power and data transmissions with a cell phone was confirmed through in vitro experiments,ray-tracing simulation results,and a tumor xenograft mouse model in vivo.This all-in-one single system for cancer treatment offers opportunities to not only enable effective treatment of tumors located deep in the tissue but also enable precise and continuous monitoring of tumor size in real-time.展开更多
The crossmodal interaction of different senses,which is an important basis for learning and memory in the human brain,is highly desired to be mimicked at the device level for developing neuromorphic crossmodal percept...The crossmodal interaction of different senses,which is an important basis for learning and memory in the human brain,is highly desired to be mimicked at the device level for developing neuromorphic crossmodal perception,but related researches are scarce.Here,we demonstrate an optoelectronic synapse for vision-olfactory crossmodal perception based on MXene/violet phosphorus(VP)van der Waals heterojunctions.Benefiting from the efficient separation and transport of photogenerated carriers facilitated by conductive MXene,the photoelectric responsivity of VP is dramatically enhanced by 7 orders of magnitude,reaching up to 7.7 A W^(−1).Excited by ultraviolet light,multiple synaptic functions,including excitatory postsynaptic currents,pairedpulse facilitation,short/long-term plasticity and“learning-experience”behavior,were demonstrated with a low power consumption.Furthermore,the proposed optoelectronic synapse exhibits distinct synaptic behaviors in different gas environments,enabling it to simulate the interaction of visual and olfactory information for crossmodal perception.This work demonstrates the great potential of VP in optoelectronics and provides a promising platform for applications such as virtual reality and neurorobotics.展开更多
Neuromorphic hardware equipped with associative learn-ing capabilities presents fascinating applications in the next generation of artificial intelligence.However,research into synaptic devices exhibiting complex asso...Neuromorphic hardware equipped with associative learn-ing capabilities presents fascinating applications in the next generation of artificial intelligence.However,research into synaptic devices exhibiting complex associative learning behaviors is still nascent.Here,an optoelec-tronic memristor based on Ag/TiO_(2) Nanowires:ZnO Quantum dots/FTO was proposed and constructed to emulate the biological associative learning behaviors.Effective implementation of synaptic behaviors,including long and short-term plasticity,and learning-forgetting-relearning behaviors,were achieved in the device through the application of light and electrical stimuli.Leveraging the optoelectronic co-modulated characteristics,a simulation of neuromorphic computing was conducted,resulting in a handwriting digit recognition accuracy of 88.9%.Furthermore,a 3×7 memristor array was constructed,confirming its application in artificial visual memory.Most importantly,complex biological associative learning behaviors were emulated by mapping the light and electrical stimuli into conditioned and unconditioned stimuli,respectively.After training through associative pairs,reflexes could be triggered solely using light stimuli.Comprehen-sively,under specific optoelectronic signal applications,the four features of classical conditioning,namely acquisition,extinction,recovery,and generalization,were elegantly emulated.This work provides an optoelectronic memristor with associative behavior capabilities,offering a pathway for advancing brain-machine interfaces,autonomous robots,and machine self-learning in the future.展开更多
Aim To solve the time delay problem in the optoelectronic tracking system, improving the tracking accuracy. Methods The discount least square algorithm was applied to forecast the tracking error caused by the 40?ms ...Aim To solve the time delay problem in the optoelectronic tracking system, improving the tracking accuracy. Methods The discount least square algorithm was applied to forecast the tracking error caused by the 40?ms delay, and the predicting algorithm was improved by the adaptive discount method.Results The tracking errors of the two methods were compared, and an optimal controller with the improved adaptive discount predicting algorithm was adopted for simulation. Conclusion The predicting algorithms, especially the adaptive discount predicting algorithm, can decrease the tracking error greatly, and the desired tracking prediction can be achieved both in the transient state and in the steady state.展开更多
This paper is concerned with a high characteristic image processing and recognition system that is used for inspecting real-time blemishes, streaks and cracks on the inner walls of high accuracy pipes. As a regular de...This paper is concerned with a high characteristic image processing and recognition system that is used for inspecting real-time blemishes, streaks and cracks on the inner walls of high accuracy pipes. As a regular detector, the BP neural network is used for extracting features of the image inspected and classifying these images, it takes fully advantage of the function of artificial neural network, such as the information distributed memory, large scale self-adapting parallel processing, high fault-tolerant ability and so forth. Besides, an improved BP algorithm is used in the system for training the network, and making the learning procedure of the net converges to the minimum of overall situation at high rate.展开更多
Neuromorphic computing systems can perform memory and computing tasks in parallel on artificial synaptic devices through simulating synaptic functions,which is promising for breaking the conventional von Neumann bottl...Neuromorphic computing systems can perform memory and computing tasks in parallel on artificial synaptic devices through simulating synaptic functions,which is promising for breaking the conventional von Neumann bottlenecks at hardware level.Artificial optoelectronic synapses enable the synergistic coupling between optical and electrical signals in synaptic modulation,which opens up an innovative path for effective neuromorphic systems.With the advantages of high mobility,optical transparency,ultrawideband tunability,and environmental stability,graphene has attracted tremendous interest for electronic and optoelectronic applications.Recent progress highlights the significance of implementing graphene into artificial synaptic devices.Herein,to better understand the potential of graphene-based synaptic devices,the fabrication technologies of graphene are first presented.Then,the roles of graphene in various synaptic devices are demonstrated.Furthermore,their typical optoelectronic applications in neuromorphic systems are reviewed.Finally,outlooks for development of synaptic devices based on graphene are proposed.This review will provide a comprehensive understanding of graphene fabrication technologies and graphene-based synaptic device for optoelectronic applications,also present an outlook for development of graphene-based synaptic device in future neuromorphic systems.展开更多
The neuromorphic systems for sound perception is under highly demanding for the future bioinspired electronics and humanoid robots.However,the sound perception based on volume,tone and timbre remains unknown.Herein,or...The neuromorphic systems for sound perception is under highly demanding for the future bioinspired electronics and humanoid robots.However,the sound perception based on volume,tone and timbre remains unknown.Herein,organic optoelectronic synapses(OOSs)are constructed for unprecedented sound recognition.The volume,tone and timbre of sound can be regulated appropriately by the input signal of voltages,frequencies and light intensities of OOSs,according to the amplitude,frequency,and waveform of the sound.The quantitative relation between recognition factor(ζ)and postsynaptic current(I=I_(light)−I_(dark))is established to achieve sound perception.Interestingly,the bell sound for University of Chinese Academy of Sciences is recognized with an accuracy of 99.8%.The mechanism studies reveal that the impedance of the interfacial layers play a critical role in the synaptic performances.This contribution presents unprecedented artificial synapses for sound perception at hardware levels.展开更多
Lead halide perovskites have received considerable attention from researchers over the past several years due to their superior optical and optoelectronic properties,because of which they can be a versatile platform f...Lead halide perovskites have received considerable attention from researchers over the past several years due to their superior optical and optoelectronic properties,because of which they can be a versatile platform for fundamental science research and applications.Patterned structures based on lead halide perovskites have much more novel properties compared with their more commonly seen bulk-,micro-,and nano-crystals,such as improvement in antireflection,light-scattering effects,and light absorption,as a result of their adjustability of spatial distributions.However,there are many challenges yet to be resolved in this field,such as insufficient patterned resolution,imperfect crystal quality,complicated preparation process,and so on.To pave the way to solve these problems,we provide a systematic presentation of current methods for fabricating lead halide perovskite patterned structures,including thermal imprint,use of etching films,two-step vapor-phase growth,template-confined solution growth,and seed-assisted growth.Furthermore,the advantages and disadvantages of these methods are elaborated in detail.In addition,thanks to the extraordinary properties of lead halide perovskite patterned structures,a variety of potential applications in optics and optoelectronics of these structures are described.Lastly,we put forward existing challenges and prospects in this exciting field.展开更多
In recent years,metal halide perovskites have received significant attention as materials for next-generation optoelectronic devices owing to their excellent optoelectronic properties.The unprecedented rapid evolution...In recent years,metal halide perovskites have received significant attention as materials for next-generation optoelectronic devices owing to their excellent optoelectronic properties.The unprecedented rapid evolution in the device performance has been achieved by gaining an advanced understanding of the composition,crystal growth,and defect engineering of perovskites.As device performances approach their theoretical limits,effective optical management becomes essential for achieving higher efficiency.In this review,we discuss the status and perspectives of nano to micron-scale patterning methods for the optical management of perovskite optoelectronic devices.We initially discuss the importance of effective light harvesting and light outcoupling via optical management.Subsequently,the recent progress in various patterning/texturing techniques applied to perovskite optoelectronic devices is summarized by categorizing them into top-down and bottom-up methods.Finally,we discuss the perspectives of advanced patterning/texturing technologies for the development and commercialization of perovskite optoelectronic devices.展开更多
High-performance interrogation systems for optical fiber sensors are extensively required for environmental condition monitoring applications.In this article,we propose and demonstrate a Michelson interferometer(MI)in...High-performance interrogation systems for optical fiber sensors are extensively required for environmental condition monitoring applications.In this article,we propose and demonstrate a Michelson interferometer(MI)interrogation system based on an optoelectronic oscillator(OEO).The frequency of the OEO is related to the free spectral range(FSR)of the MI.Thus,when the FSR of the MI varies with a change in external physical factors,the frequency of the OEO shifts and can be used for interrogation.We demonstrate that the temperature sensitivity and interrogation resolution are 35.35 MHz/℃and 0.012℃,respectively.Such an OEO-based scheme enables wavelength-to-frequency mapping and promises a wide linear interrogation range,high resolution and high-speed interrogation.展开更多
In the era of accelerated development in artificial intelligence as well as explosive growth of information and data throughput,underlying hardware devices that can integrate perception and memory while simultaneously...In the era of accelerated development in artificial intelligence as well as explosive growth of information and data throughput,underlying hardware devices that can integrate perception and memory while simultaneously offering the bene-fits of low power consumption and high transmission rates are particularly valuable.Neuromorphic devices inspired by the human brain are considered to be one of the most promising successors to the efficient in-sensory process.In this paper,a homojunction-based multi-functional optoelectronic synapse(MFOS)is proposed and testified.It enables a series of basic electri-cal synaptic plasticity,including paired-pulse facilitation/depression(PPF/PPD)and long-term promotion/depression(LTP/LTD).In addition,the synaptic behaviors induced by electrical signals could be instead achieved through optical signals,where its sen-sitivity to optical frequency allows the MFOS to simulate high-pass filtering applications in situ and the perception capability integrated into memory endows it with the information acquisition and processing functions as a visual system.Meanwhile,the MFOS exhibits its performances of associative learning and logic gates following the illumination with two different wave-lengths.As a result,the proposed MFOS offers a solution for the realization of intelligent visual system and bionic electronic eye,and will provide more diverse application scenarios for future neuromorphic computing.展开更多
Solubility enhancement has been a priority to overcome poor solubility with optoelectronic molecules for solution-processable devices. This study aims to obtain experimental data on the effect of particle sizes on the...Solubility enhancement has been a priority to overcome poor solubility with optoelectronic molecules for solution-processable devices. This study aims to obtain experimental data on the effect of particle sizes on the solubility properties of several typical optoelectronic molecules in organic solvents, including the solubility results of 1,3-bis(9-carbazolyl)benzene(m CP), 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)ben zene(TPBi) and 2-(4-tert-butylphenyl)-5-(4-biphenyl)-1,3,4-oxadiazole(PBD) in ethanol and acetonitrile,respectively. Nanoparticles of m CP, TPBi and PBD with sizes from dozens to several hundred nanometers were prepared by solvent antisolvent precipitation method and their solubility were determined by using isothermal saturation method. The saturation solubility of nanoparticles of three kinds of optoelectronic molecules exhibited increase of 12.9%-25.7% in comparison to the same raw materials in the form of microparticles. The experimental evidence indicates that nanonization technology is a feasible way to make optoelectronic molecules dissolve in liquids with enhanced solubility.展开更多
Optoelectronic materials are essential for today's scientific and technological development,and machine learning provides new ideas and tools for their research.In this paper,we first summarize the development his...Optoelectronic materials are essential for today's scientific and technological development,and machine learning provides new ideas and tools for their research.In this paper,we first summarize the development history of optoelectronic materials and how materials informatics drives the innovation and progress of optoelectronic materials and devices.Then,we introduce the development of machine learning and its general process in optoelectronic materials and describe the specific implementation methods.We focus on the cases of machine learning in several application scenarios of optoelectronic materials and devices,including the methods related to crystal structure,properties(defects,electronic structure)research,materials and devices optimization,material characterization,and process optimization.In summarizing the algorithms and feature representations used in different studies,it is noted that prior knowledge can improve optoelectronic materials design,research,and decision-making processes.Finally,the prospect of machine learning applications in optoelectronic materials is discussed,along with current challenges and future directions.This paper comprehensively describes the application value of machine learning in optoelectronic materials research and aims to provide reference and guidance for the continuous development of this field.展开更多
Silicon nanomaterials have been of immense interest in the last few decades due to their remarkable optoelectronic responses,elemental abundance,and higher biocompatibility.Two-dimensional silicon is one of the new al...Silicon nanomaterials have been of immense interest in the last few decades due to their remarkable optoelectronic responses,elemental abundance,and higher biocompatibility.Two-dimensional silicon is one of the new allotropes of silicon and has many compelling properties such as quantum-confined photoluminescence,high charge carrier mobilities,anisotropic electronic and magnetic response,and non-linear optical properties.This review summarizes the recent advances in the synthesis of two-dimensional silicon nanomaterials with a range of structures(silicene,silicane,and multilayered silicon),surface ligand engineering,and corresponding optoelectronic applications.展开更多
Multilevel phase-change memory is an attractive technology to increase storage capacity and density owing to its high-speed,scalable and non-volatile characteristics.However,the contradiction between thermal stability...Multilevel phase-change memory is an attractive technology to increase storage capacity and density owing to its high-speed,scalable and non-volatile characteristics.However,the contradiction between thermal stability and operation speed is one of key factors to restrain the development of phase-change memory.Here,N-doped Ge_(2)Sb_(2)Te_(5)-based optoelectronic hybrid memory is proposed to simultaneously implement high thermal stability and ultrafast operation speed.The picosecond laser is adopted to write/erase information based on reversible phase transition characteristics whereas the resistance is detected to perform information readout.Results show that when N content is 27.4 at.%,N-doped Ge_(2)Sb_(2)Te_(5)film possesses high ten-year data retention temperature of 175℃and low resistance drift coefficient of 0.00024 at 85℃,0.00170 at 120℃,and 0.00249 at 150℃,respectively,owing to the formation of Ge–N,Sb–N,and Te–N bonds.The SET/RESET operation speeds of the film reach 520 ps/13 ps.In parallel,the reversible switching cycle of the corresponding device is realized with the resistance ratio of three orders of magnitude.Four-level reversible resistance states induced by various crystallization degrees are also obtained together with low resistance drift coefficients.Therefore,the N-doped Ge_(2)Sb_(2)Te_(5)thin film is a promising phase-change material for ultrafast multilevel optoelectronic hybrid storage.展开更多
Neuromorphic devices that mimic the information processing function of biological synapses and neurons have attracted considerable attention due to their potential applications in brain-like perception and computing. ...Neuromorphic devices that mimic the information processing function of biological synapses and neurons have attracted considerable attention due to their potential applications in brain-like perception and computing. In this paper,neuromorphic transistors with W-doped In_(2)O_(3)nanofibers as the channel layers are fabricated and optoelectronic synergistic synaptic plasticity is also investigated. Such nanofiber transistors can be used to emulate some biological synaptic functions, including excitatory postsynaptic current(EPSC), long-term potentiation(LTP), and depression(LTD). Moreover, the synaptic plasticity of the nanofiber transistor can be synergistically modulated by light pulse and electrical pulse.At last, pulsed light learning and pulsed electrical forgetting behaviors were emulated in 5×5 nanofiber device array.Our results provide new insights into the development of nanofiber optoelectronic neuromorphic devices with synergistic synaptic plasticity.展开更多
Gallium oxide(Ga_(2)O_(3))has garnered world-wide atten-tion as an ultrawide-bandgap semiconductor material from the area of power electronics and DUV optical devices benefit-ing from its outstanding electronic and op...Gallium oxide(Ga_(2)O_(3))has garnered world-wide atten-tion as an ultrawide-bandgap semiconductor material from the area of power electronics and DUV optical devices benefit-ing from its outstanding electronic and optoelectronic proper-ties.For one thing,since Ga_(2)O_(3)features high critical break-down field of 8 MV/cm and Baliga’s figure of merit(BFOM)of 3444,it is a promising candidate for advanced high-power applications.For another thing,due to the bandgap directly corresponding to the deep-ultraviolet(DUV)region,Ga_(2)O_(3)is widely used in DUV optoelectronic devices.展开更多
The exploitation of fossil resources to meet humanity’s energy needs is the root cause of the climate warming phenomenon facing the planet. In this context, non-carbon-based energies, such as photovoltaic energy, are...The exploitation of fossil resources to meet humanity’s energy needs is the root cause of the climate warming phenomenon facing the planet. In this context, non-carbon-based energies, such as photovoltaic energy, are identified as crucial solutions. Organic perovskites MAPbI<sub>3</sub> and FAPbI<sub>3</sub>, characterized by their abundance, low cost, and ease of synthesis, are emerging as candidates for study to enhance their competitiveness. It is within this framework that this article presents a comparative analysis of the performances of MAPbI<sub>3</sub> and FAPbI<sub>3</sub> perovskites in the context of photovoltaic devices. The analysis focuses on the optoelectronic characteristics and stability of these high-potential materials. The optical properties of perovskites are rigorously evaluated, including band gaps, photoluminescence, and light absorption, using UV-Vis spectroscopy and photoluminescence techniques. The crystal structure is characterized by X-ray diffraction, while film morphology is examined through scanning electron microscopy. The results reveal significant variations between the two types of perovskites, directly impacting the performance of resulting solar devices. Simultaneously, the stability of perovskites is subjected to a thorough study, exposing the materials to various environmental conditions, highlighting key determinants of their durability. Films of MAPbI<sub>3</sub> and FAPbI<sub>3</sub> demonstrate distinct differences in terms of topography, optical performance, and stability. Research has unveiled that planar perovskite solar cells based on FAPbI<sub>3</sub> offer higher photoelectric conversion efficiency, surpassing their MAPbI<sub>3</sub>-based counterparts in terms of performance. These advancements aim to overcome stability constraints and enhance the long-term durability of perovskites, ultimately aiming for practical application of these materials. This comprehensive comparative analysis provides an enlightened understanding of the optoelectronic performance and stability of MAPbI<sub>3</sub> and FAPbI<sub>3</sub> perovskites, which is critically important to guide future research and development of solar devices that are both more efficient and sustainable.展开更多
文摘Optoelectronic systems represent the gold standard of technologies used in the motion analysis for the evaluation of kinematics. Trials, a specialty of mountain biking, differ a lot from other cycling specialties, because in addition to pedaling, they require jumping techniques to overcome obstacles that involve the whole body. In this sport, more than in others, the evaluation of technical movements using optoelectronic systems goes far beyond simply assessing the biomechanics of pedaling or the correct positioning on the bike. Starting from a previous study conducted with video analysis technique applied to the lateral jumping technique, two versions of this technique were compared, considering the kinematics of the act, taking into account both the data relating the subject and the bicycle. The joint angles of the lower limbs and the angles described by the bicycle on the three space plane were considered. The major differences have been found in the "leap over" phase, about the bending of the lower limbs and the angles described by the bicycle.
基金supported by Institute for Basic Science(IBS-R006-A1)supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education(2021R1I1A1A01060389).
文摘In recent years,significant progress has been achieved in the design and fabrication of stretchable optoelectronic devices.In general,stretchability has been achieved through geometrical modifications of device components,such as with serpentine interconnects or buckled substrates.However,the local stiffness of individual pixels and the limited pixel density of the array have impeded further advancements in stretchable optoelectronics.Therefore,intrinsically stretch-able optoelectronics have been proposed as an alternative approach.Herein,we review the recent advances in soft elec-tronic materials for application in intrinsically stretchable optoelectronic devices.First,we introduce various intrinsically stretchable electronic materials,comprised of electronic fillers,elastomers,and surfactants,and exemplify different in-trinsically stretchable conducting and semiconducting composites.We also describe the processing methods used to fabricate the electrodes,interconnections,charge transport layers,and optically active layers used in intrinsically stretch-able optoelectronic devices.Subsequently,we review representative examples of intrinsically stretchable optoelectronic devices,including light-emitting capacitors,light-emitting diodes,photodetectors,and photovoltaics.Finally,we briefly discuss intrinsically stretchable integrated optoelectronic systems.
文摘Photodynamic therapy(PDT)is attracting attention as a next-generation cancer treatment that can selectively destroy malignant tissues,exhibit fewer side effects,and lack pain during treatments.Implantable PDT systems have recently been developed to resolve the issues of bulky and expensive conventional PDT systems and to implement continuous and repetitive treatment.Existing implantable PDT systems,however,are not able to perform multiple functions simultaneously,such as modulating light intensity,measuring,and transmitting tumor-related data,resulting in the complexity of cancer treatment.Here,we introduce a flexible and fully implantable wireless optoelectronic system capable of continuous and effective cancer treatment by fusing PDT and hyperthermia and enabling tumor size monitoring in real-time.This system exploits micro inorganic light-emitting diodes(μ-LED)that emit light with a wavelength of 624 nm,designed not to affect surrounding normal tissues by utilizing a fully programmable light intensity ofμ-LED and precisely monitoring the tumor size by Si phototransistor during a long-term implantation(2–3 weeks).The superiority of simultaneous cancer treatment and tumor size monitoring capabilities of our system operated by wireless power and data transmissions with a cell phone was confirmed through in vitro experiments,ray-tracing simulation results,and a tumor xenograft mouse model in vivo.This all-in-one single system for cancer treatment offers opportunities to not only enable effective treatment of tumors located deep in the tissue but also enable precise and continuous monitoring of tumor size in real-time.
基金supported by National Natural Science Foundation of China(No.51902250).
文摘The crossmodal interaction of different senses,which is an important basis for learning and memory in the human brain,is highly desired to be mimicked at the device level for developing neuromorphic crossmodal perception,but related researches are scarce.Here,we demonstrate an optoelectronic synapse for vision-olfactory crossmodal perception based on MXene/violet phosphorus(VP)van der Waals heterojunctions.Benefiting from the efficient separation and transport of photogenerated carriers facilitated by conductive MXene,the photoelectric responsivity of VP is dramatically enhanced by 7 orders of magnitude,reaching up to 7.7 A W^(−1).Excited by ultraviolet light,multiple synaptic functions,including excitatory postsynaptic currents,pairedpulse facilitation,short/long-term plasticity and“learning-experience”behavior,were demonstrated with a low power consumption.Furthermore,the proposed optoelectronic synapse exhibits distinct synaptic behaviors in different gas environments,enabling it to simulate the interaction of visual and olfactory information for crossmodal perception.This work demonstrates the great potential of VP in optoelectronics and provides a promising platform for applications such as virtual reality and neurorobotics.
基金This work was supported by the Jinan City-University Integrated Development Strategy Project under Grant(JNSX2023017)National Research Foundation of Korea(NRF)grant funded by the Korea government(MIST)(RS-2023-00302751)+1 种基金by the National Research Foundation of Korea(NRF)funded by the Ministry of Education under Grants 2018R1A6A1A03025242 and 2018R1D1A1A09083353by Qilu Young Scholar Program of Shandong University.
文摘Neuromorphic hardware equipped with associative learn-ing capabilities presents fascinating applications in the next generation of artificial intelligence.However,research into synaptic devices exhibiting complex associative learning behaviors is still nascent.Here,an optoelec-tronic memristor based on Ag/TiO_(2) Nanowires:ZnO Quantum dots/FTO was proposed and constructed to emulate the biological associative learning behaviors.Effective implementation of synaptic behaviors,including long and short-term plasticity,and learning-forgetting-relearning behaviors,were achieved in the device through the application of light and electrical stimuli.Leveraging the optoelectronic co-modulated characteristics,a simulation of neuromorphic computing was conducted,resulting in a handwriting digit recognition accuracy of 88.9%.Furthermore,a 3×7 memristor array was constructed,confirming its application in artificial visual memory.Most importantly,complex biological associative learning behaviors were emulated by mapping the light and electrical stimuli into conditioned and unconditioned stimuli,respectively.After training through associative pairs,reflexes could be triggered solely using light stimuli.Comprehen-sively,under specific optoelectronic signal applications,the four features of classical conditioning,namely acquisition,extinction,recovery,and generalization,were elegantly emulated.This work provides an optoelectronic memristor with associative behavior capabilities,offering a pathway for advancing brain-machine interfaces,autonomous robots,and machine self-learning in the future.
文摘Aim To solve the time delay problem in the optoelectronic tracking system, improving the tracking accuracy. Methods The discount least square algorithm was applied to forecast the tracking error caused by the 40?ms delay, and the predicting algorithm was improved by the adaptive discount method.Results The tracking errors of the two methods were compared, and an optimal controller with the improved adaptive discount predicting algorithm was adopted for simulation. Conclusion The predicting algorithms, especially the adaptive discount predicting algorithm, can decrease the tracking error greatly, and the desired tracking prediction can be achieved both in the transient state and in the steady state.
文摘This paper is concerned with a high characteristic image processing and recognition system that is used for inspecting real-time blemishes, streaks and cracks on the inner walls of high accuracy pipes. As a regular detector, the BP neural network is used for extracting features of the image inspected and classifying these images, it takes fully advantage of the function of artificial neural network, such as the information distributed memory, large scale self-adapting parallel processing, high fault-tolerant ability and so forth. Besides, an improved BP algorithm is used in the system for training the network, and making the learning procedure of the net converges to the minimum of overall situation at high rate.
基金the National Natural Science Foundation of China (Grant No. 61974093)Guangdong Basic and Applied Basic Research Foundation (Grant No. 2023A1515012479)+2 种基金Guangdong Provincial Department of Science and Technology (Grant No. 2020A1515110883)the Science and Technology Innovation Commission of Shenzhen (Grant Nos. RCYX20200714114524157 and JCYJ20220818100206013)NTUT-SZU Joint Research Program (Grant No. NTUT-SZU-112-02)
文摘Neuromorphic computing systems can perform memory and computing tasks in parallel on artificial synaptic devices through simulating synaptic functions,which is promising for breaking the conventional von Neumann bottlenecks at hardware level.Artificial optoelectronic synapses enable the synergistic coupling between optical and electrical signals in synaptic modulation,which opens up an innovative path for effective neuromorphic systems.With the advantages of high mobility,optical transparency,ultrawideband tunability,and environmental stability,graphene has attracted tremendous interest for electronic and optoelectronic applications.Recent progress highlights the significance of implementing graphene into artificial synaptic devices.Herein,to better understand the potential of graphene-based synaptic devices,the fabrication technologies of graphene are first presented.Then,the roles of graphene in various synaptic devices are demonstrated.Furthermore,their typical optoelectronic applications in neuromorphic systems are reviewed.Finally,outlooks for development of synaptic devices based on graphene are proposed.This review will provide a comprehensive understanding of graphene fabrication technologies and graphene-based synaptic device for optoelectronic applications,also present an outlook for development of graphene-based synaptic device in future neuromorphic systems.
基金supported by the NSFC(51925306 and 21774130)National Key R&D Program of China(2018FYA 0305800)+2 种基金Key Research Program of the Chinese Academy of Sciences(XDPB08-2)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB28000000)University of Chinese Academy of Sciences.
文摘The neuromorphic systems for sound perception is under highly demanding for the future bioinspired electronics and humanoid robots.However,the sound perception based on volume,tone and timbre remains unknown.Herein,organic optoelectronic synapses(OOSs)are constructed for unprecedented sound recognition.The volume,tone and timbre of sound can be regulated appropriately by the input signal of voltages,frequencies and light intensities of OOSs,according to the amplitude,frequency,and waveform of the sound.The quantitative relation between recognition factor(ζ)and postsynaptic current(I=I_(light)−I_(dark))is established to achieve sound perception.Interestingly,the bell sound for University of Chinese Academy of Sciences is recognized with an accuracy of 99.8%.The mechanism studies reveal that the impedance of the interfacial layers play a critical role in the synaptic performances.This contribution presents unprecedented artificial synapses for sound perception at hardware levels.
基金The authors acknowledge support from the National Natural Science Foundation of China(Grant Nos.51902061 and 62090031).
文摘Lead halide perovskites have received considerable attention from researchers over the past several years due to their superior optical and optoelectronic properties,because of which they can be a versatile platform for fundamental science research and applications.Patterned structures based on lead halide perovskites have much more novel properties compared with their more commonly seen bulk-,micro-,and nano-crystals,such as improvement in antireflection,light-scattering effects,and light absorption,as a result of their adjustability of spatial distributions.However,there are many challenges yet to be resolved in this field,such as insufficient patterned resolution,imperfect crystal quality,complicated preparation process,and so on.To pave the way to solve these problems,we provide a systematic presentation of current methods for fabricating lead halide perovskite patterned structures,including thermal imprint,use of etching films,two-step vapor-phase growth,template-confined solution growth,and seed-assisted growth.Furthermore,the advantages and disadvantages of these methods are elaborated in detail.In addition,thanks to the extraordinary properties of lead halide perovskite patterned structures,a variety of potential applications in optics and optoelectronics of these structures are described.Lastly,we put forward existing challenges and prospects in this exciting field.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2020R1I1A3054824)supported by the Basic Research Program through the NRF funded by the MSIT(Ministry of Science and ICT,2021R1A4A1032762)+2 种基金financial support by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)the Ministry of Trade,Industry&Energy(MOTIE)of the Republic of Korea(no.20213030010400)the financial support by the NRF grant funded by the MSIT under the contract numbers 2022R1C1C1011975。
文摘In recent years,metal halide perovskites have received significant attention as materials for next-generation optoelectronic devices owing to their excellent optoelectronic properties.The unprecedented rapid evolution in the device performance has been achieved by gaining an advanced understanding of the composition,crystal growth,and defect engineering of perovskites.As device performances approach their theoretical limits,effective optical management becomes essential for achieving higher efficiency.In this review,we discuss the status and perspectives of nano to micron-scale patterning methods for the optical management of perovskite optoelectronic devices.We initially discuss the importance of effective light harvesting and light outcoupling via optical management.Subsequently,the recent progress in various patterning/texturing techniques applied to perovskite optoelectronic devices is summarized by categorizing them into top-down and bottom-up methods.Finally,we discuss the perspectives of advanced patterning/texturing technologies for the development and commercialization of perovskite optoelectronic devices.
文摘High-performance interrogation systems for optical fiber sensors are extensively required for environmental condition monitoring applications.In this article,we propose and demonstrate a Michelson interferometer(MI)interrogation system based on an optoelectronic oscillator(OEO).The frequency of the OEO is related to the free spectral range(FSR)of the MI.Thus,when the FSR of the MI varies with a change in external physical factors,the frequency of the OEO shifts and can be used for interrogation.We demonstrate that the temperature sensitivity and interrogation resolution are 35.35 MHz/℃and 0.012℃,respectively.Such an OEO-based scheme enables wavelength-to-frequency mapping and promises a wide linear interrogation range,high resolution and high-speed interrogation.
基金supported by the National Natural Science Foundation of China under Grant(62174068,61625404).
文摘In the era of accelerated development in artificial intelligence as well as explosive growth of information and data throughput,underlying hardware devices that can integrate perception and memory while simultaneously offering the bene-fits of low power consumption and high transmission rates are particularly valuable.Neuromorphic devices inspired by the human brain are considered to be one of the most promising successors to the efficient in-sensory process.In this paper,a homojunction-based multi-functional optoelectronic synapse(MFOS)is proposed and testified.It enables a series of basic electri-cal synaptic plasticity,including paired-pulse facilitation/depression(PPF/PPD)and long-term promotion/depression(LTP/LTD).In addition,the synaptic behaviors induced by electrical signals could be instead achieved through optical signals,where its sen-sitivity to optical frequency allows the MFOS to simulate high-pass filtering applications in situ and the perception capability integrated into memory endows it with the information acquisition and processing functions as a visual system.Meanwhile,the MFOS exhibits its performances of associative learning and logic gates following the illumination with two different wave-lengths.As a result,the proposed MFOS offers a solution for the realization of intelligent visual system and bionic electronic eye,and will provide more diverse application scenarios for future neuromorphic computing.
基金financial support from National Natural Science Foundation of China (22288102)the Fundamental Research Funds for the Central Universities of China (buctrc202016)。
文摘Solubility enhancement has been a priority to overcome poor solubility with optoelectronic molecules for solution-processable devices. This study aims to obtain experimental data on the effect of particle sizes on the solubility properties of several typical optoelectronic molecules in organic solvents, including the solubility results of 1,3-bis(9-carbazolyl)benzene(m CP), 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)ben zene(TPBi) and 2-(4-tert-butylphenyl)-5-(4-biphenyl)-1,3,4-oxadiazole(PBD) in ethanol and acetonitrile,respectively. Nanoparticles of m CP, TPBi and PBD with sizes from dozens to several hundred nanometers were prepared by solvent antisolvent precipitation method and their solubility were determined by using isothermal saturation method. The saturation solubility of nanoparticles of three kinds of optoelectronic molecules exhibited increase of 12.9%-25.7% in comparison to the same raw materials in the form of microparticles. The experimental evidence indicates that nanonization technology is a feasible way to make optoelectronic molecules dissolve in liquids with enhanced solubility.
基金Project supported by the National Natural Science Foundation of China (Grant No.61601198)the University of Jinan PhD Foundation (Grant No.XBS1714)。
文摘Optoelectronic materials are essential for today's scientific and technological development,and machine learning provides new ideas and tools for their research.In this paper,we first summarize the development history of optoelectronic materials and how materials informatics drives the innovation and progress of optoelectronic materials and devices.Then,we introduce the development of machine learning and its general process in optoelectronic materials and describe the specific implementation methods.We focus on the cases of machine learning in several application scenarios of optoelectronic materials and devices,including the methods related to crystal structure,properties(defects,electronic structure)research,materials and devices optimization,material characterization,and process optimization.In summarizing the algorithms and feature representations used in different studies,it is noted that prior knowledge can improve optoelectronic materials design,research,and decision-making processes.Finally,the prospect of machine learning applications in optoelectronic materials is discussed,along with current challenges and future directions.This paper comprehensively describes the application value of machine learning in optoelectronic materials research and aims to provide reference and guidance for the continuous development of this field.
基金the National Natural Science Foundation of China(21905316,22175201)Guangdong Natural Science Foundation(2019A1515011748)+1 种基金the Science and Technology Planning Project of Guangdong Province(2019A050510018)Sun Yat-sen University.
文摘Silicon nanomaterials have been of immense interest in the last few decades due to their remarkable optoelectronic responses,elemental abundance,and higher biocompatibility.Two-dimensional silicon is one of the new allotropes of silicon and has many compelling properties such as quantum-confined photoluminescence,high charge carrier mobilities,anisotropic electronic and magnetic response,and non-linear optical properties.This review summarizes the recent advances in the synthesis of two-dimensional silicon nanomaterials with a range of structures(silicene,silicane,and multilayered silicon),surface ligand engineering,and corresponding optoelectronic applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62205231 and 22002102)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX223271)Jiangsu Key Laboratory for Environment Functional Materials。
文摘Multilevel phase-change memory is an attractive technology to increase storage capacity and density owing to its high-speed,scalable and non-volatile characteristics.However,the contradiction between thermal stability and operation speed is one of key factors to restrain the development of phase-change memory.Here,N-doped Ge_(2)Sb_(2)Te_(5)-based optoelectronic hybrid memory is proposed to simultaneously implement high thermal stability and ultrafast operation speed.The picosecond laser is adopted to write/erase information based on reversible phase transition characteristics whereas the resistance is detected to perform information readout.Results show that when N content is 27.4 at.%,N-doped Ge_(2)Sb_(2)Te_(5)film possesses high ten-year data retention temperature of 175℃and low resistance drift coefficient of 0.00024 at 85℃,0.00170 at 120℃,and 0.00249 at 150℃,respectively,owing to the formation of Ge–N,Sb–N,and Te–N bonds.The SET/RESET operation speeds of the film reach 520 ps/13 ps.In parallel,the reversible switching cycle of the corresponding device is realized with the resistance ratio of three orders of magnitude.Four-level reversible resistance states induced by various crystallization degrees are also obtained together with low resistance drift coefficients.Therefore,the N-doped Ge_(2)Sb_(2)Te_(5)thin film is a promising phase-change material for ultrafast multilevel optoelectronic hybrid storage.
基金Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA1200051 and 2019YFB2205400)the National Natural Science Foundation of China (Grant Nos. 62174082 and 62074075)。
文摘Neuromorphic devices that mimic the information processing function of biological synapses and neurons have attracted considerable attention due to their potential applications in brain-like perception and computing. In this paper,neuromorphic transistors with W-doped In_(2)O_(3)nanofibers as the channel layers are fabricated and optoelectronic synergistic synaptic plasticity is also investigated. Such nanofiber transistors can be used to emulate some biological synaptic functions, including excitatory postsynaptic current(EPSC), long-term potentiation(LTP), and depression(LTD). Moreover, the synaptic plasticity of the nanofiber transistor can be synergistically modulated by light pulse and electrical pulse.At last, pulsed light learning and pulsed electrical forgetting behaviors were emulated in 5×5 nanofiber device array.Our results provide new insights into the development of nanofiber optoelectronic neuromorphic devices with synergistic synaptic plasticity.
文摘Gallium oxide(Ga_(2)O_(3))has garnered world-wide atten-tion as an ultrawide-bandgap semiconductor material from the area of power electronics and DUV optical devices benefit-ing from its outstanding electronic and optoelectronic proper-ties.For one thing,since Ga_(2)O_(3)features high critical break-down field of 8 MV/cm and Baliga’s figure of merit(BFOM)of 3444,it is a promising candidate for advanced high-power applications.For another thing,due to the bandgap directly corresponding to the deep-ultraviolet(DUV)region,Ga_(2)O_(3)is widely used in DUV optoelectronic devices.
文摘The exploitation of fossil resources to meet humanity’s energy needs is the root cause of the climate warming phenomenon facing the planet. In this context, non-carbon-based energies, such as photovoltaic energy, are identified as crucial solutions. Organic perovskites MAPbI<sub>3</sub> and FAPbI<sub>3</sub>, characterized by their abundance, low cost, and ease of synthesis, are emerging as candidates for study to enhance their competitiveness. It is within this framework that this article presents a comparative analysis of the performances of MAPbI<sub>3</sub> and FAPbI<sub>3</sub> perovskites in the context of photovoltaic devices. The analysis focuses on the optoelectronic characteristics and stability of these high-potential materials. The optical properties of perovskites are rigorously evaluated, including band gaps, photoluminescence, and light absorption, using UV-Vis spectroscopy and photoluminescence techniques. The crystal structure is characterized by X-ray diffraction, while film morphology is examined through scanning electron microscopy. The results reveal significant variations between the two types of perovskites, directly impacting the performance of resulting solar devices. Simultaneously, the stability of perovskites is subjected to a thorough study, exposing the materials to various environmental conditions, highlighting key determinants of their durability. Films of MAPbI<sub>3</sub> and FAPbI<sub>3</sub> demonstrate distinct differences in terms of topography, optical performance, and stability. Research has unveiled that planar perovskite solar cells based on FAPbI<sub>3</sub> offer higher photoelectric conversion efficiency, surpassing their MAPbI<sub>3</sub>-based counterparts in terms of performance. These advancements aim to overcome stability constraints and enhance the long-term durability of perovskites, ultimately aiming for practical application of these materials. This comprehensive comparative analysis provides an enlightened understanding of the optoelectronic performance and stability of MAPbI<sub>3</sub> and FAPbI<sub>3</sub> perovskites, which is critically important to guide future research and development of solar devices that are both more efficient and sustainable.