The photogalvanic effect was studied in photogalvanic cell containing orange G as Photosensitizer, sodium lauryl sulphate and EDTA as reducing agent. The photo-outputs with EDTA are higher for Solar Energy Conversion ...The photogalvanic effect was studied in photogalvanic cell containing orange G as Photosensitizer, sodium lauryl sulphate and EDTA as reducing agent. The photo-outputs with EDTA are higher for Solar Energy Conversion and Storage. The current-voltage relations of the cell have been measured in the dark and light under both forward and reverse direction. The photo potential and photocurrent generated was found to be 960.0 mV and 350.0 μA, respectively. The observed conversion efficiency was 1.52% fill factor and the maximum power of cell was 0.47 μA and 158.9 μW. The storage capacity of the cell was 80.0 minutes in dark. A mechanism was proposed for the generation of photocurrent in photo galvanic cell.展开更多
文摘The photogalvanic effect was studied in photogalvanic cell containing orange G as Photosensitizer, sodium lauryl sulphate and EDTA as reducing agent. The photo-outputs with EDTA are higher for Solar Energy Conversion and Storage. The current-voltage relations of the cell have been measured in the dark and light under both forward and reverse direction. The photo potential and photocurrent generated was found to be 960.0 mV and 350.0 μA, respectively. The observed conversion efficiency was 1.52% fill factor and the maximum power of cell was 0.47 μA and 158.9 μW. The storage capacity of the cell was 80.0 minutes in dark. A mechanism was proposed for the generation of photocurrent in photo galvanic cell.