Satellite-to-Satellite tricking (SST) data can be used to determine the orbits of spacecraft in two ways. One is combined orbit determination, which combines SST data with ground-based tracking data and exploits the ...Satellite-to-Satellite tricking (SST) data can be used to determine the orbits of spacecraft in two ways. One is combined orbit determination, which combines SST data with ground-based tracking data and exploits the enhanced tracking geometry. The other is the autonomous orbit determination, which uses only SST. The latter only fits some particular circumstances since it suffers the rank defect problem in other circumstances. The proof of this statement is presented. The nature of the problem is also investigated in order to find an effective solution. Several. methods of solution are discussed. The feasibility of the methods is demonstrated by their application to a simulation.展开更多
We study theoretically Josephson effect in a planar ballistic junction between two triplet superconductors with pwave orbital symmetries and separated by a two-dimensional(2D)semiconductor channel with strong Rashba s...We study theoretically Josephson effect in a planar ballistic junction between two triplet superconductors with pwave orbital symmetries and separated by a two-dimensional(2D)semiconductor channel with strong Rashba spin–orbit coupling.In triplet superconductors,three types of orbital symmetries are considered.We use Bogoliubov–de Gennes formalism to describe quasiparticle propagations through the junction and the supercurrents are calculated in terms of Andreev reflection coefficients.The features of the variation of the supercurrents with the change of the strength of Rashba spin–orbit coupling are investigated in some detail.It is found that for the three types of orbital symmetries considered,both the magnitudes of supercurrent and the current-phase relations can be manipulated effectively by tuning the strength of Rashba spin–orbit coupling.The interplay of Rashba spin–orbit coupling and Zeeman magnetic field on supercurrent is also investigated in some detail.展开更多
Two experimental satellites, Chuangxin 1-03 and Shiyan Satellite 4, were put into orbit on a LM-2D launch vehicle from the Jiuquan Satellite Launch Center (JSLC) in northwest China's Gansu Province on November 20.
A hyperbolic Lindstedt-Poincare method is presented to determine the homoclinic solutions of a kind of nonlinear oscillators, in which critical value of the homoclinic bifurcation parameter can be determined. The gene...A hyperbolic Lindstedt-Poincare method is presented to determine the homoclinic solutions of a kind of nonlinear oscillators, in which critical value of the homoclinic bifurcation parameter can be determined. The generalized Lienard oscillator is studied in detail, and the present method's predictions are compared with those of Runge-Kutta method to illustrate its accuracy.展开更多
Periodic orbits in an arbitrary 2nd degree and order uniformly rotating gravity field are studied. We investigate the four equilibrium points in this gravity field. We see that close relation exists between the stabil...Periodic orbits in an arbitrary 2nd degree and order uniformly rotating gravity field are studied. We investigate the four equilibrium points in this gravity field. We see that close relation exists between the stability of these equilibria and the existence and stability of their nearby periodic orbits. We check the periodic orbits with non-zero periods. In our searching procedure for these periodic orbits, we remove the two unity eigenvalues from the state transition matrix to find a robust, non-singular linear map to solve for the periodic orbits. The algorithm converges well, especially for stable periodic orbits. Using the searching procedure, which is relatively automatic, we find five basic families of periodic orbits in the rotating second degree and order gravity field for planar motion, and discuss their existence and stability at different central body rotation rates.展开更多
This paper considers nonlinear dynamics of teth- ered three-body formation system with their centre of mass staying on a circular orbit around the Earth, and applies the theory of space manifold dynamics to deal with ...This paper considers nonlinear dynamics of teth- ered three-body formation system with their centre of mass staying on a circular orbit around the Earth, and applies the theory of space manifold dynamics to deal with the nonlinear dynamical behaviors of the equilibrium configurations of the system. Compared with the classical circular restricted three body system, sixteen equilibrium configurations are obtained globally from the geometry of pseudo-potential energy sur- face, four of which were omitted in the previous research. The periodic Lyapunov orbits and their invariant manifolds near the hyperbolic equilibria are presented, and an iteration procedure for identifying Lyapunov orbit is proposed based on the differential correction algorithm. The non-transversal intersections between invariant manifolds are addressed to generate homoclinic and heteroclinic trajectories between the Lyapunov orbits. (3,3)- and (2,1)-heteroclinic trajecto- ries from the neighborhood of one collinear equilibrium to that of another one, and (3,6)- and (2,1)-homoclinic trajecto- ries from and to the neighborhood of the same equilibrium, are obtained based on the Poincar6 mapping technique.展开更多
Since the concept of Nongravitational Force (hereafter NF) was first proposed a century and a half ago, different models of it have been suggested and being modified. Its effect on the orbital motions of comets has be...Since the concept of Nongravitational Force (hereafter NF) was first proposed a century and a half ago, different models of it have been suggested and being modified. Its effect on the orbital motions of comets has been studied. Especially, some researchers have attempted to draw some inclues of the physical nature of the cometary nucleus from the NF parameters. In this paper, we try to give a concise review about the different models of NF and their effects on orbit computation. And then, we will try to detect whether there is nongravitational effect on Comet Hale-Bopp’s orbital motion using Style II NF model.展开更多
A detailed theoretical analysis on the orbital lifetime and orbital inclination of a Low Moon-Orbiting satellite (LMOs) and the ‘stable areas' of long orbital lifetime are given. Numerical simulations under the re...A detailed theoretical analysis on the orbital lifetime and orbital inclination of a Low Moon-Orbiting satellite (LMOs) and the ‘stable areas' of long orbital lifetime are given. Numerical simulations under the real force model were carried out, which not only validate the theoretical analysis and also give some valuable results for the orbit design of the LMOs.展开更多
We found another critical mass ratio value -↑μ between μ4 and μ5 concerning the genealogy of the long period family around the equilateral equilibrium point L4 in the restricted three-body problem. This value has ...We found another critical mass ratio value -↑μ between μ4 and μ5 concerning the genealogy of the long period family around the equilateral equilibrium point L4 in the restricted three-body problem. This value has not been pointed out before. We used numerical computations to show how the long period family evolves around this critical value. The case is similar to that of the critical values between μ2 and μ4, with slight difference in evolution details.展开更多
We examine 14 plates of the globular cluster M3 (NGC 5272) taken with the 40 cm refractor at the Sheshan station of Shanghai Astronomical Observatory. The plates span over a period of about 77 years. The positions and...We examine 14 plates of the globular cluster M3 (NGC 5272) taken with the 40 cm refractor at the Sheshan station of Shanghai Astronomical Observatory. The plates span over a period of about 77 years. The positions and absolute proper motions of eight stars in the Hipparcos Catalogue and of 49 stars in the Tycho-2 Catalogue are used as the reference frame. The astrometric reduction is made with the central overlapping principle. The absolute proper motions of 534 stars in a region of about 100' × 100' around the cluster are measured. With the new proper motion data the membership probabilities of the stars are determined. The average absolute proper motion obtained for the cluster is -0.06±0.30 mas yr-1 in R.A. and -2.6±0.30 mas yr-1 in Decl. By combining this result with the known distance and radial velocity of the cluster, we also obtained the Galactic orbit of M3 for a chosen three-component Galactic potential.展开更多
Catalytic chemiluminescence of over twenty metallic ions in the systemof 2, 6, 7-tihydroxyl-9- (4'-chlorophenyl)-3-fluorone (Cl-PF )-H2O2 has been tested.Trace amount of Co(Ⅱ) strong1y catalysed this chemilumines...Catalytic chemiluminescence of over twenty metallic ions in the systemof 2, 6, 7-tihydroxyl-9- (4'-chlorophenyl)-3-fluorone (Cl-PF )-H2O2 has been tested.Trace amount of Co(Ⅱ) strong1y catalysed this chemiluminescence reaction, especiallyin presence of cationic surfactant cetyltrimethylammonium bromide (CTMAB), andthe chemiluminescence intensity was proportional to the concentraction of Co(Ⅱ) in therange 0. 5~6ng. ml-1 Co(Ⅱ). Two steps could be involved in the chemiluminescentreaction of C1-PF. In alkaline solution, the O2 radical ion should attack an oxygenbridge between the benzene rings of Cl-PF with break in oxygen bridge bond to produce reaction product which is excited by the energy derived from this chemical reaction. The electronic excited state emits the radiation(560 nm) on falling to the groundstate, followed by formation of polyphenol derivatives. the polyphenol derivatives arefurther oxidized to produce chemiluminescence (480 nm) which is due to emission fromsinglet oxygen.展开更多
The Tianhui-202(TH02-02)satellite formation,as a supplement to the microwave mapping satellite system Tianhui-201(TH02-01),is the first Interferometric Synthetic Aperture Radar(InSAR)satellite formation-flying system ...The Tianhui-202(TH02-02)satellite formation,as a supplement to the microwave mapping satellite system Tianhui-201(TH02-01),is the first Interferometric Synthetic Aperture Radar(InSAR)satellite formation-flying system that supports the tracking of BeiDou global navigation Satellite system(BDS3)new B1C and B2a signals.Meanwhile,the twin TH02-02 satellites also support the tracking of Global Positioning System(GPS)L1&L2 and BDS B1I&B3I signals.As the spaceborne receiver employs two independent boards to track the Global Navigation Satellite System(GNSS)satellites,we design an orbit determination strategy by estimating independent receiver clock offsets epoch by epoch for each GNSS to realize the multi-GNSS data fusion from different boards.The performance of the spaceborne receiver is evaluated and the contribution of BDS3 to the kinematic and reduced-dynamic Precise Orbit Determination(POD)of TH02-02 satellites is investigated.The tracking data onboard shows that the average number of available BDS3 and GPS satellites are 8.7 and 9.1,respectively.The carrier-to-noise ratio and carrier phase noise of BDS3 B1C and B2a signals are comparable to those of GPS.However,strong azimuth-related systematic biases are recognized in the pseudorange multipath errors of B1C and B3I.The pseudorange noise of BDS3 signals is better than that of GPS after eliminating the multipath errors from specific signals.Taking the GPS-based reduced-dynamic orbit with single-receiver ambiguity fixing technique as a reference,the results of BDS3-only and BDS3+GPS combined POD are assessed.The Root Mean Square(RMS)of orbit comparison of BDS3-based kinematic and reduced-dynamic POD with reference orbit are better than 7 cm and 3 cm in three-Dimensional direction(3D).The POD performance based on B1C&B2a data is comparable to that based on B1I&B3I.The precision of BDS3+GPS combined kinematic orbit can reach up to 3 cm(3D RMS),which has a more than 25%improvement relative to the GPS-only solution.In addition,the consistency between the BDS3+GPS combined reduced-dynamic orbit and the GPS-based ambiguity-fixed orbit is better than 1.5 cm(3D RMS).展开更多
This paper aims to provide further study on the nonlinear modeling and controller design of formation flying spacecraft in deep space missions. First, in the Sun-Earth system, the nonlinear formation dynamics for the ...This paper aims to provide further study on the nonlinear modeling and controller design of formation flying spacecraft in deep space missions. First, in the Sun-Earth system, the nonlinear formation dynamics for the circular restricted three-body problem (CRTBP) and elliptic restricted three-body problem (ERTBP) are presented. Then, with the Floquet mode method, an impulsive controller is developed to keep the Chief on the desired Halo orbit. Finally, a nonlinear adaptive control scheme based on Nonzero set- point LQR and neural network is proposed to achieve high precision formation maneuver and keeping. The simulation results indicate that the proposed nonlinear control strategy is reasonable as it considers not only the orbit keeping of the Chief, but also the formation modeling inaccuracy. Moreover, the nonlinear adaptive control scheme is effective to improve the control accuracy of the formation keeping.展开更多
The resulting slag particles from solid rocket motor( SRM) firings are an important component of space debris environment. Slag sizes as large as 1 cm have been witnessed in ground tests,and comparable sizes have been...The resulting slag particles from solid rocket motor( SRM) firings are an important component of space debris environment. Slag sizes as large as 1 cm have been witnessed in ground tests,and comparable sizes have been also estimated via observations of sub-orbital tail-off events. We achieve slag initial data based on MASTER slag model and SRM historical launch data,and propagate slag long-term orbital evolution taking into account the zonal harmonics J2,atmospheric drag,solar radiation pressure and luni-solar attraction to discuss the slag size distribution and orbital characteristics. Finally,future slag debris environment is evaluated based on two different launch rate assumptions. The result shows that current launch frequency will make the slag population sustain growth and the population will not decrease at once even if there are no more launches in the future.展开更多
Stars in the Pulkovo Observatory program are observed with a 65-cm refractor during many years to study their positions and movements. We present examples of two visual binary stars, for which orbits and masses of com...Stars in the Pulkovo Observatory program are observed with a 65-cm refractor during many years to study their positions and movements. We present examples of two visual binary stars, for which orbits and masses of components were determined, and two astrometric stars, for which masses of their unseen companions were estimated. The first two stars are ADS 14636 (61 Cygni) and ADS 7251, and the others are Gliese 623 and ADS 8035 (Alpha UMa). Direct astrometric methods are used for estimation of mass-ratio and masses.展开更多
To increase the current density of the hole only device, 1, 4, 5, 8, 9, 11-hexaazatriphenylene-hexacarbonitrile (HAT-CN) material has been inserted in the device at the indium tin oxide (ITO)/organic interface. Since ...To increase the current density of the hole only device, 1, 4, 5, 8, 9, 11-hexaazatriphenylene-hexacarbonitrile (HAT-CN) material has been inserted in the device at the indium tin oxide (ITO)/organic interface. Since HATCN molecule can withdraw electrons, it can alter electronic properties of the electrodes and hence inserted between the organic/metal interfaces. This paper deals with the optimization of the thickness of organic-metal layers to enhance the efficiency. Also, efforts have been made to increase the current density and reduce the operating voltage of the device. The material 2, 7-bis [N, N-bis (4- methoxy-phenyl) amino]-9, 9-spirobifluorene (Meo-Spiro-TPD) is used to simulate the hole only device because it is a thermally stable hole transport material. Simulated results shows that better current density values can be achieved compared to fabricated one by optimizing the organic metal layer thickness. The best optimized layer thickness of 22 nm for Alq3, 25 nm for *CBP doped with Ir(ppy)3, 9 nm for Meo-Spiro TPD and 4 nm for HAT-CN which results in current density of 0.12 A/cm2 with a reduction in operating voltage by approximately 2 V.展开更多
Seven new sesquiterpenoids, namely eupatochinilides Ⅰ-Ⅶ (1-7), together with eight known compounds, euponin (8), mollisorin A (9), niveusin B (10), 8β-(4'-acetoxy-tiglyloxy)-3β-hydroxy-6Hβ,7Hα-germacr...Seven new sesquiterpenoids, namely eupatochinilides Ⅰ-Ⅶ (1-7), together with eight known compounds, euponin (8), mollisorin A (9), niveusin B (10), 8β-(4'-acetoxy-tiglyloxy)-3β-hydroxy-6Hβ,7Hα-germacra-1(10)E,4E,11(13)-trien-6,12-olide (11), eupalinifide B (12), 8β-(4'-hydroxytigloyloxy)-5-desoxy-8-desacyleuparotin (13), 3-deacetyeupalinin A (14), and 15-hydroxyleptocarpin (15), were isolated from the ethanolic extract of the whole plant of Eupatorium chinense L. Their structures and stereochemistry were established by spectroscopic methods and GIAO based ^13C NMR chemical shift calculations.展开更多
文摘Satellite-to-Satellite tricking (SST) data can be used to determine the orbits of spacecraft in two ways. One is combined orbit determination, which combines SST data with ground-based tracking data and exploits the enhanced tracking geometry. The other is the autonomous orbit determination, which uses only SST. The latter only fits some particular circumstances since it suffers the rank defect problem in other circumstances. The proof of this statement is presented. The nature of the problem is also investigated in order to find an effective solution. Several. methods of solution are discussed. The feasibility of the methods is demonstrated by their application to a simulation.
文摘We study theoretically Josephson effect in a planar ballistic junction between two triplet superconductors with pwave orbital symmetries and separated by a two-dimensional(2D)semiconductor channel with strong Rashba spin–orbit coupling.In triplet superconductors,three types of orbital symmetries are considered.We use Bogoliubov–de Gennes formalism to describe quasiparticle propagations through the junction and the supercurrents are calculated in terms of Andreev reflection coefficients.The features of the variation of the supercurrents with the change of the strength of Rashba spin–orbit coupling are investigated in some detail.It is found that for the three types of orbital symmetries considered,both the magnitudes of supercurrent and the current-phase relations can be manipulated effectively by tuning the strength of Rashba spin–orbit coupling.The interplay of Rashba spin–orbit coupling and Zeeman magnetic field on supercurrent is also investigated in some detail.
文摘Two experimental satellites, Chuangxin 1-03 and Shiyan Satellite 4, were put into orbit on a LM-2D launch vehicle from the Jiuquan Satellite Launch Center (JSLC) in northwest China's Gansu Province on November 20.
基金supported by the National Natural Science Foundation of China (10672193)Sun Yat-sen University (Fu Lan Scholarship)the University of Hong Kong (CRGC grant).
文摘A hyperbolic Lindstedt-Poincare method is presented to determine the homoclinic solutions of a kind of nonlinear oscillators, in which critical value of the homoclinic bifurcation parameter can be determined. The generalized Lienard oscillator is studied in detail, and the present method's predictions are compared with those of Runge-Kutta method to illustrate its accuracy.
文摘Periodic orbits in an arbitrary 2nd degree and order uniformly rotating gravity field are studied. We investigate the four equilibrium points in this gravity field. We see that close relation exists between the stability of these equilibria and the existence and stability of their nearby periodic orbits. We check the periodic orbits with non-zero periods. In our searching procedure for these periodic orbits, we remove the two unity eigenvalues from the state transition matrix to find a robust, non-singular linear map to solve for the periodic orbits. The algorithm converges well, especially for stable periodic orbits. Using the searching procedure, which is relatively automatic, we find five basic families of periodic orbits in the rotating second degree and order gravity field for planar motion, and discuss their existence and stability at different central body rotation rates.
基金supported by the National Natural Science Foundation of China(11172020)Talent Foundation supported by the Fundamental Research Funds for the Central Universities+1 种基金Aerospace Science and Technology Innovation Foundation of China Aerospace Science Corporationthe National High Technology Research and Development Program of China(863)(2012AA120601)
文摘This paper considers nonlinear dynamics of teth- ered three-body formation system with their centre of mass staying on a circular orbit around the Earth, and applies the theory of space manifold dynamics to deal with the nonlinear dynamical behaviors of the equilibrium configurations of the system. Compared with the classical circular restricted three body system, sixteen equilibrium configurations are obtained globally from the geometry of pseudo-potential energy sur- face, four of which were omitted in the previous research. The periodic Lyapunov orbits and their invariant manifolds near the hyperbolic equilibria are presented, and an iteration procedure for identifying Lyapunov orbit is proposed based on the differential correction algorithm. The non-transversal intersections between invariant manifolds are addressed to generate homoclinic and heteroclinic trajectories between the Lyapunov orbits. (3,3)- and (2,1)-heteroclinic trajecto- ries from the neighborhood of one collinear equilibrium to that of another one, and (3,6)- and (2,1)-homoclinic trajecto- ries from and to the neighborhood of the same equilibrium, are obtained based on the Poincar6 mapping technique.
文摘Since the concept of Nongravitational Force (hereafter NF) was first proposed a century and a half ago, different models of it have been suggested and being modified. Its effect on the orbital motions of comets has been studied. Especially, some researchers have attempted to draw some inclues of the physical nature of the cometary nucleus from the NF parameters. In this paper, we try to give a concise review about the different models of NF and their effects on orbit computation. And then, we will try to detect whether there is nongravitational effect on Comet Hale-Bopp’s orbital motion using Style II NF model.
文摘A detailed theoretical analysis on the orbital lifetime and orbital inclination of a Low Moon-Orbiting satellite (LMOs) and the ‘stable areas' of long orbital lifetime are given. Numerical simulations under the real force model were carried out, which not only validate the theoretical analysis and also give some valuable results for the orbit design of the LMOs.
基金Supported by the National Natural Science Foundation of China
文摘We found another critical mass ratio value -↑μ between μ4 and μ5 concerning the genealogy of the long period family around the equilateral equilibrium point L4 in the restricted three-body problem. This value has not been pointed out before. We used numerical computations to show how the long period family evolves around this critical value. The case is similar to that of the critical values between μ2 and μ4, with slight difference in evolution details.
基金NKBRSF19990754 and National Natural Sciences Foundation under grant 19833010.
文摘We examine 14 plates of the globular cluster M3 (NGC 5272) taken with the 40 cm refractor at the Sheshan station of Shanghai Astronomical Observatory. The plates span over a period of about 77 years. The positions and absolute proper motions of eight stars in the Hipparcos Catalogue and of 49 stars in the Tycho-2 Catalogue are used as the reference frame. The astrometric reduction is made with the central overlapping principle. The absolute proper motions of 534 stars in a region of about 100' × 100' around the cluster are measured. With the new proper motion data the membership probabilities of the stars are determined. The average absolute proper motion obtained for the cluster is -0.06±0.30 mas yr-1 in R.A. and -2.6±0.30 mas yr-1 in Decl. By combining this result with the known distance and radial velocity of the cluster, we also obtained the Galactic orbit of M3 for a chosen three-component Galactic potential.
文摘Catalytic chemiluminescence of over twenty metallic ions in the systemof 2, 6, 7-tihydroxyl-9- (4'-chlorophenyl)-3-fluorone (Cl-PF )-H2O2 has been tested.Trace amount of Co(Ⅱ) strong1y catalysed this chemiluminescence reaction, especiallyin presence of cationic surfactant cetyltrimethylammonium bromide (CTMAB), andthe chemiluminescence intensity was proportional to the concentraction of Co(Ⅱ) in therange 0. 5~6ng. ml-1 Co(Ⅱ). Two steps could be involved in the chemiluminescentreaction of C1-PF. In alkaline solution, the O2 radical ion should attack an oxygenbridge between the benzene rings of Cl-PF with break in oxygen bridge bond to produce reaction product which is excited by the energy derived from this chemical reaction. The electronic excited state emits the radiation(560 nm) on falling to the groundstate, followed by formation of polyphenol derivatives. the polyphenol derivatives arefurther oxidized to produce chemiluminescence (480 nm) which is due to emission fromsinglet oxygen.
基金funded by the National Natural Science Foundation of China(Nos.61803018 and 41874028)the Key Laboratory Found,China(No.6142210200105)the National Key R&D Program of China(No.2020YFA0713502).
文摘The Tianhui-202(TH02-02)satellite formation,as a supplement to the microwave mapping satellite system Tianhui-201(TH02-01),is the first Interferometric Synthetic Aperture Radar(InSAR)satellite formation-flying system that supports the tracking of BeiDou global navigation Satellite system(BDS3)new B1C and B2a signals.Meanwhile,the twin TH02-02 satellites also support the tracking of Global Positioning System(GPS)L1&L2 and BDS B1I&B3I signals.As the spaceborne receiver employs two independent boards to track the Global Navigation Satellite System(GNSS)satellites,we design an orbit determination strategy by estimating independent receiver clock offsets epoch by epoch for each GNSS to realize the multi-GNSS data fusion from different boards.The performance of the spaceborne receiver is evaluated and the contribution of BDS3 to the kinematic and reduced-dynamic Precise Orbit Determination(POD)of TH02-02 satellites is investigated.The tracking data onboard shows that the average number of available BDS3 and GPS satellites are 8.7 and 9.1,respectively.The carrier-to-noise ratio and carrier phase noise of BDS3 B1C and B2a signals are comparable to those of GPS.However,strong azimuth-related systematic biases are recognized in the pseudorange multipath errors of B1C and B3I.The pseudorange noise of BDS3 signals is better than that of GPS after eliminating the multipath errors from specific signals.Taking the GPS-based reduced-dynamic orbit with single-receiver ambiguity fixing technique as a reference,the results of BDS3-only and BDS3+GPS combined POD are assessed.The Root Mean Square(RMS)of orbit comparison of BDS3-based kinematic and reduced-dynamic POD with reference orbit are better than 7 cm and 3 cm in three-Dimensional direction(3D).The POD performance based on B1C&B2a data is comparable to that based on B1I&B3I.The precision of BDS3+GPS combined kinematic orbit can reach up to 3 cm(3D RMS),which has a more than 25%improvement relative to the GPS-only solution.In addition,the consistency between the BDS3+GPS combined reduced-dynamic orbit and the GPS-based ambiguity-fixed orbit is better than 1.5 cm(3D RMS).
文摘This paper aims to provide further study on the nonlinear modeling and controller design of formation flying spacecraft in deep space missions. First, in the Sun-Earth system, the nonlinear formation dynamics for the circular restricted three-body problem (CRTBP) and elliptic restricted three-body problem (ERTBP) are presented. Then, with the Floquet mode method, an impulsive controller is developed to keep the Chief on the desired Halo orbit. Finally, a nonlinear adaptive control scheme based on Nonzero set- point LQR and neural network is proposed to achieve high precision formation maneuver and keeping. The simulation results indicate that the proposed nonlinear control strategy is reasonable as it considers not only the orbit keeping of the Chief, but also the formation modeling inaccuracy. Moreover, the nonlinear adaptive control scheme is effective to improve the control accuracy of the formation keeping.
基金Sponsored by the Space Debris Special Projects of State Administration of Science Technology and Industry for National Defense(Grant No.K020410-1/2)
文摘The resulting slag particles from solid rocket motor( SRM) firings are an important component of space debris environment. Slag sizes as large as 1 cm have been witnessed in ground tests,and comparable sizes have been also estimated via observations of sub-orbital tail-off events. We achieve slag initial data based on MASTER slag model and SRM historical launch data,and propagate slag long-term orbital evolution taking into account the zonal harmonics J2,atmospheric drag,solar radiation pressure and luni-solar attraction to discuss the slag size distribution and orbital characteristics. Finally,future slag debris environment is evaluated based on two different launch rate assumptions. The result shows that current launch frequency will make the slag population sustain growth and the population will not decrease at once even if there are no more launches in the future.
文摘Stars in the Pulkovo Observatory program are observed with a 65-cm refractor during many years to study their positions and movements. We present examples of two visual binary stars, for which orbits and masses of components were determined, and two astrometric stars, for which masses of their unseen companions were estimated. The first two stars are ADS 14636 (61 Cygni) and ADS 7251, and the others are Gliese 623 and ADS 8035 (Alpha UMa). Direct astrometric methods are used for estimation of mass-ratio and masses.
文摘To increase the current density of the hole only device, 1, 4, 5, 8, 9, 11-hexaazatriphenylene-hexacarbonitrile (HAT-CN) material has been inserted in the device at the indium tin oxide (ITO)/organic interface. Since HATCN molecule can withdraw electrons, it can alter electronic properties of the electrodes and hence inserted between the organic/metal interfaces. This paper deals with the optimization of the thickness of organic-metal layers to enhance the efficiency. Also, efforts have been made to increase the current density and reduce the operating voltage of the device. The material 2, 7-bis [N, N-bis (4- methoxy-phenyl) amino]-9, 9-spirobifluorene (Meo-Spiro-TPD) is used to simulate the hole only device because it is a thermally stable hole transport material. Simulated results shows that better current density values can be achieved compared to fabricated one by optimizing the organic metal layer thickness. The best optimized layer thickness of 22 nm for Alq3, 25 nm for *CBP doped with Ir(ppy)3, 9 nm for Meo-Spiro TPD and 4 nm for HAT-CN which results in current density of 0.12 A/cm2 with a reduction in operating voltage by approximately 2 V.
基金Project supported by the National Natural Science Foundation of China (No. 30025044) and the Foundation of the Ministry of Science and Technology of China (No. 2002CB512807).
文摘Seven new sesquiterpenoids, namely eupatochinilides Ⅰ-Ⅶ (1-7), together with eight known compounds, euponin (8), mollisorin A (9), niveusin B (10), 8β-(4'-acetoxy-tiglyloxy)-3β-hydroxy-6Hβ,7Hα-germacra-1(10)E,4E,11(13)-trien-6,12-olide (11), eupalinifide B (12), 8β-(4'-hydroxytigloyloxy)-5-desoxy-8-desacyleuparotin (13), 3-deacetyeupalinin A (14), and 15-hydroxyleptocarpin (15), were isolated from the ethanolic extract of the whole plant of Eupatorium chinense L. Their structures and stereochemistry were established by spectroscopic methods and GIAO based ^13C NMR chemical shift calculations.