The numbers of beam positions(BPs)and time slots for beam hopping(BH)dominate the latency of LEO satellite communications.Aiming at minimizing the number of BPs subject to a predefined requirement on the radius of BP,...The numbers of beam positions(BPs)and time slots for beam hopping(BH)dominate the latency of LEO satellite communications.Aiming at minimizing the number of BPs subject to a predefined requirement on the radius of BP,a low-complexity user density-based BP design scheme is proposed,where the original problem is decomposed into two subproblems,with the first one to find the sparsest user and the second one to determine the corresponding best BP.In particular,for the second subproblem,a user selection and smallest BP radius algorithm is proposed,where the nearby users are sequentially selected until the constraint of the given BP radius is no longer satisfied.These two subproblems are iteratively solved until all the users are selected.To further reduce the BP radius,a duplicated user removal algorithm is proposed to decrease the number of the users covered by two or more BPs.Aiming at minimizing the number of time slots subject to the no co-channel interference(CCI)constraint and the traffic demand constraint,a low-complexity CCI-free BH design scheme is proposed,where the BPs having difficulty in satisfying the constraints are considered to be illuminated in priory.Simulation results verify the effectiveness of the proposed schemes.展开更多
The paper describes the development of mobile communication first and then points out that it is necessary for China to develop satellite mobile communication after comparing the cellular mobile communication with the...The paper describes the development of mobile communication first and then points out that it is necessary for China to develop satellite mobile communication after comparing the cellular mobile communication with the satellite mobile communication. After comparing the geostationary satellite system with the low earth orbit satellite mobile communication system, as well as the single-beam system with the multibeams system, both used in satellite mobile communication, we suggest that China, according to its economic status and level of satellite technology, should develop a geostationary multibeam satellite for its domestic mobile communication.展开更多
This paper discusses the significance and prospects of low altitude small satellite aerial vehicles to ensure smooth aerial-ground communications for next-generation broadband networks.To achieve the generic goals of ...This paper discusses the significance and prospects of low altitude small satellite aerial vehicles to ensure smooth aerial-ground communications for next-generation broadband networks.To achieve the generic goals of fifthgeneration and beyondwireless networks,the existing aerial network architecture needs to be revisited.The detailed architecture of low altitude aerial networks and the challenges in resource management have been illustrated in this paper.Moreover,we have studied the coordination between promising communication technologies and low altitude aerial networks to provide robust network coverage.We talk about the techniques that can ensure userfriendly control and monitoring of the low altitude aerial networks to bring forth wireless broadband connectivity to a new dimension.In the end,we highlight the future research directions of aerial-ground communications in terms of access technologies,machine learning,compressed sensing,and quantum communications.展开更多
Since the lower power requirement of code division multiple access(CDMA) than that of other multiple access, the CDMA technology is suitable to be used in low earth orbit(LEO) satellite communication system whose spac...Since the lower power requirement of code division multiple access(CDMA) than that of other multiple access, the CDMA technology is suitable to be used in low earth orbit(LEO) satellite communication system whose space power is limited due to the small size of satellite. The pilot channel of CDMA technology is very important for earth mobile station(EMS) in LEO system to recover carrier and code, but the power requirement of pilot channel is very higher than that of other channels. In this paper, a power reduction method for pilot channel is proposed. By the new method, the power of pilot channel transmitted from LEO satellite is reduced to a lower level. For improving the signal to noise ratio(SNR) of pilot channel with lower power, coherent integration is employed in EMS at the pre-processing stage. Considering the high dynamic situation of LEO satellite, the long period of time for integration will deteriorate the receiving performance of EMS, therefore, a dynamic compensation module is added to carrier tracking loop against the high dynamic. Meanwhile, the transfer function of the new tracking loop and the condition for steadystate zero error are deduced. Numerical examples are provided to demonstrate effectiveness of the proposed approach.展开更多
The distributed prescribed-time orbit containment control for the satellite cluster flight with multiple dynamic leaders is investigated.The directed information communication topology between followers is taken into ...The distributed prescribed-time orbit containment control for the satellite cluster flight with multiple dynamic leaders is investigated.The directed information communication topology between followers is taken into account in the overall paper.When the satellite mass is assumed to be constant,a distributed prescribed-time orbit containment controller is,firstly,presented to drive the followers into the dynamic convex hull produced by multiple leaders.Then,the parameter uncertainty is considered,and a prescribed-time sliding mode estimator is introduced to estimate the desired velocity of each follower.Based on the estimated state,a novel distributed adaptive prescribed-time orbit containment control scheme is proposed.The Lyapunov stability theory is utilized to prove the prescribed-time stability of the closed-loop system.Finally,several numerical simulations and comparison of different control methods are provided to verify the effectiveness and superiority of the proposed control method.展开更多
In order to determine an appropriate attitude of three-axis stabilized communication satellites, this paper describes a novel attitude determination method using direction of arrival (DOA) estimation of a ground sig...In order to determine an appropriate attitude of three-axis stabilized communication satellites, this paper describes a novel attitude determination method using direction of arrival (DOA) estimation of a ground signal source. It differs from optical measurement, magnetic field measurement, inertial measurement, and global positioning system (GPS) attitude determination. The proposed method is characterized by taking the ground signal source as the attitude reference and acquiring attitude information from DOA estimation. Firstly, an attitude measurement equation with DOA estimation is derived in detail. Then, the error of the measurement equation is analyzed. Finally, an attitude determination algorithm is presented using a dynamic model, the attitude measurement equation, and measurement errors. A developing low Earth orbit (LEO) satellite which tests mobile communication technology with smart antennas can be stabilized in three axes by corporately using a magnetometer, reaction wheels, and three-axis magnetorquer rods. Based on the communication satellite, simulation results demonstrate the effectiveness of the method. The method could be a backup of attitude determination to prevent a system failure on the satellite. Its precision depends on the number of snapshots and the input signal-to-noise ratio (SNR) with DOA estimation.展开更多
Satellite Internet of Things(IoT)is a promising way to provide seamless coverage to a massive number of devices all over the world,especially in remote areas not covered by cellular networks,e.g.,forests,oceans,mounta...Satellite Internet of Things(IoT)is a promising way to provide seamless coverage to a massive number of devices all over the world,especially in remote areas not covered by cellular networks,e.g.,forests,oceans,mountains,and deserts.In general,satellite IoT networks take low Earth orbit(LEO)satellites as access points,which solves the problem of wide coverage,but leads to many challenging issues.We first give an overview of satellite IoT,with an emphasis on revealing the characteristics of IoT services.Then,the challenging issues of satellite IoT,i.e.,massive connectivity,wide coverage,high mobility,low power,and stringent delay,are analyzed in detail.Furthermore,the possible solutions to these challenges are provided.In particular,new massive access protocols and techniques are designed according to the characteristics and requirements of satellite IoT.Finally,we discuss several development trends of satellite IoT to stimulate and encourage further research in such a broad area.展开更多
Low-earth orbit(LEO)satellite networks ignite global wireless connectivity.However,signal outages and co-channel interference limit the coverage in traditional LEO satellite networks where a user is served by a single...Low-earth orbit(LEO)satellite networks ignite global wireless connectivity.However,signal outages and co-channel interference limit the coverage in traditional LEO satellite networks where a user is served by a single satellite.This paper explores the possibility of satellite cooperation in the downlink transmissions.Using tools from stochastic geometry,we model and analyze the downlink coverage of a typical user with satellite cooperation under Nakagami fading channels.Moreover,we derive the joint distance distribution of cooperative LEO satellites to the typical user.Our model incorporates fading channels,cooperation among several satellites,satellites'density and altitude,and co-channel interference.Extensive Monte Carlo simulations are performed to validate analytical results.Simulation and numerical results suggest that coverage with LEO satellites cooperation considerably exceeds coverage without cooperation.Moreover,there are optimal satellite density and satellite altitude that maximize the coverage probability,which gives valuable network design insights.展开更多
基金supported in part by National Key Research and Development Program of China under Grant 2021YFB2900404。
文摘The numbers of beam positions(BPs)and time slots for beam hopping(BH)dominate the latency of LEO satellite communications.Aiming at minimizing the number of BPs subject to a predefined requirement on the radius of BP,a low-complexity user density-based BP design scheme is proposed,where the original problem is decomposed into two subproblems,with the first one to find the sparsest user and the second one to determine the corresponding best BP.In particular,for the second subproblem,a user selection and smallest BP radius algorithm is proposed,where the nearby users are sequentially selected until the constraint of the given BP radius is no longer satisfied.These two subproblems are iteratively solved until all the users are selected.To further reduce the BP radius,a duplicated user removal algorithm is proposed to decrease the number of the users covered by two or more BPs.Aiming at minimizing the number of time slots subject to the no co-channel interference(CCI)constraint and the traffic demand constraint,a low-complexity CCI-free BH design scheme is proposed,where the BPs having difficulty in satisfying the constraints are considered to be illuminated in priory.Simulation results verify the effectiveness of the proposed schemes.
文摘The paper describes the development of mobile communication first and then points out that it is necessary for China to develop satellite mobile communication after comparing the cellular mobile communication with the satellite mobile communication. After comparing the geostationary satellite system with the low earth orbit satellite mobile communication system, as well as the single-beam system with the multibeams system, both used in satellite mobile communication, we suggest that China, according to its economic status and level of satellite technology, should develop a geostationary multibeam satellite for its domestic mobile communication.
文摘This paper discusses the significance and prospects of low altitude small satellite aerial vehicles to ensure smooth aerial-ground communications for next-generation broadband networks.To achieve the generic goals of fifthgeneration and beyondwireless networks,the existing aerial network architecture needs to be revisited.The detailed architecture of low altitude aerial networks and the challenges in resource management have been illustrated in this paper.Moreover,we have studied the coordination between promising communication technologies and low altitude aerial networks to provide robust network coverage.We talk about the techniques that can ensure userfriendly control and monitoring of the low altitude aerial networks to bring forth wireless broadband connectivity to a new dimension.In the end,we highlight the future research directions of aerial-ground communications in terms of access technologies,machine learning,compressed sensing,and quantum communications.
基金supported by the National High Technology Research and Development Program of China (863 Program) (No.2012AA01A502)the National Natural Science Foundation of China (No.61179006)the Science and Technology Support Program of Sichuan Province (No.2014GZX0004)
文摘Since the lower power requirement of code division multiple access(CDMA) than that of other multiple access, the CDMA technology is suitable to be used in low earth orbit(LEO) satellite communication system whose space power is limited due to the small size of satellite. The pilot channel of CDMA technology is very important for earth mobile station(EMS) in LEO system to recover carrier and code, but the power requirement of pilot channel is very higher than that of other channels. In this paper, a power reduction method for pilot channel is proposed. By the new method, the power of pilot channel transmitted from LEO satellite is reduced to a lower level. For improving the signal to noise ratio(SNR) of pilot channel with lower power, coherent integration is employed in EMS at the pre-processing stage. Considering the high dynamic situation of LEO satellite, the long period of time for integration will deteriorate the receiving performance of EMS, therefore, a dynamic compensation module is added to carrier tracking loop against the high dynamic. Meanwhile, the transfer function of the new tracking loop and the condition for steadystate zero error are deduced. Numerical examples are provided to demonstrate effectiveness of the proposed approach.
文摘The distributed prescribed-time orbit containment control for the satellite cluster flight with multiple dynamic leaders is investigated.The directed information communication topology between followers is taken into account in the overall paper.When the satellite mass is assumed to be constant,a distributed prescribed-time orbit containment controller is,firstly,presented to drive the followers into the dynamic convex hull produced by multiple leaders.Then,the parameter uncertainty is considered,and a prescribed-time sliding mode estimator is introduced to estimate the desired velocity of each follower.Based on the estimated state,a novel distributed adaptive prescribed-time orbit containment control scheme is proposed.The Lyapunov stability theory is utilized to prove the prescribed-time stability of the closed-loop system.Finally,several numerical simulations and comparison of different control methods are provided to verify the effectiveness and superiority of the proposed control method.
基金co-supported by the National Natural Science Foundation of China (No. 61073012)the Aeronautical Science Foundation of China (No. 20111951015)
文摘In order to determine an appropriate attitude of three-axis stabilized communication satellites, this paper describes a novel attitude determination method using direction of arrival (DOA) estimation of a ground signal source. It differs from optical measurement, magnetic field measurement, inertial measurement, and global positioning system (GPS) attitude determination. The proposed method is characterized by taking the ground signal source as the attitude reference and acquiring attitude information from DOA estimation. Firstly, an attitude measurement equation with DOA estimation is derived in detail. Then, the error of the measurement equation is analyzed. Finally, an attitude determination algorithm is presented using a dynamic model, the attitude measurement equation, and measurement errors. A developing low Earth orbit (LEO) satellite which tests mobile communication technology with smart antennas can be stabilized in three axes by corporately using a magnetometer, reaction wheels, and three-axis magnetorquer rods. Based on the communication satellite, simulation results demonstrate the effectiveness of the method. The method could be a backup of attitude determination to prevent a system failure on the satellite. Its precision depends on the number of snapshots and the input signal-to-noise ratio (SNR) with DOA estimation.
基金Project supported by the National Natural Science Foundation of China(No.U21A20443)。
文摘Satellite Internet of Things(IoT)is a promising way to provide seamless coverage to a massive number of devices all over the world,especially in remote areas not covered by cellular networks,e.g.,forests,oceans,mountains,and deserts.In general,satellite IoT networks take low Earth orbit(LEO)satellites as access points,which solves the problem of wide coverage,but leads to many challenging issues.We first give an overview of satellite IoT,with an emphasis on revealing the characteristics of IoT services.Then,the challenging issues of satellite IoT,i.e.,massive connectivity,wide coverage,high mobility,low power,and stringent delay,are analyzed in detail.Furthermore,the possible solutions to these challenges are provided.In particular,new massive access protocols and techniques are designed according to the characteristics and requirements of satellite IoT.Finally,we discuss several development trends of satellite IoT to stimulate and encourage further research in such a broad area.
文摘Low-earth orbit(LEO)satellite networks ignite global wireless connectivity.However,signal outages and co-channel interference limit the coverage in traditional LEO satellite networks where a user is served by a single satellite.This paper explores the possibility of satellite cooperation in the downlink transmissions.Using tools from stochastic geometry,we model and analyze the downlink coverage of a typical user with satellite cooperation under Nakagami fading channels.Moreover,we derive the joint distance distribution of cooperative LEO satellites to the typical user.Our model incorporates fading channels,cooperation among several satellites,satellites'density and altitude,and co-channel interference.Extensive Monte Carlo simulations are performed to validate analytical results.Simulation and numerical results suggest that coverage with LEO satellites cooperation considerably exceeds coverage without cooperation.Moreover,there are optimal satellite density and satellite altitude that maximize the coverage probability,which gives valuable network design insights.