Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, ...Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, e.g. SAR interferometry(InSAR) and SAR tomography(TomoSAR), holographic SAR can retrieve 3D structure by observations in azimuth. This paper focuses on designing a novel type of orbit to achieve SAR regional all-azimuth observation(AAO) for embedded targets detection and holographic 3D reconstruction. The ground tracks of the AAO orbit separate the earth surface into grids. Target in these grids can be accessed with an azimuth angle span of360°, which is similar to the flight path of airborne circular SAR(CSAR). Inspired from the successive coverage orbits of optical sensors, several optimizations are made in the proposed method to ensure favorable grazing angles, the performance of 3D reconstruction, and long-term supervision for SAR sensors. Simulation experiments show the regional AAO can be completed within five hours. In addition, a second AAO of the same area can be duplicated in two days. Finally, an airborne SAR data process result is presented to illustrate the significance of AAO in 3D reconstruction.展开更多
Space Very Long Baseline Interferometry(S-VLBI) is an aperture synthesis technique utilizing an array of radio telescopes including ground telescopes and space orbiting telescopes.It can achieve much higher spatial re...Space Very Long Baseline Interferometry(S-VLBI) is an aperture synthesis technique utilizing an array of radio telescopes including ground telescopes and space orbiting telescopes.It can achieve much higher spatial resolution than that from the ground-only VLBI.In this paper,a new concept of twin spacecraft S-VLBI has been proposed,which utilizes the space-space baselines formed by two satellites to obtain larger and uniform uv coverage without atmospheric influence and hence achieve high quality images with higher angular resolution.The orbit selections of the two satellites are investigated.The imaging performance and actual launch conditions are all taken into account in orbit designing of the twin spacecraft S-VLBI.Three schemes of orbit design using traditional elliptical orbits and circular orbits are presented.These design results can be used for different scientific goals.Furthermore,these designing ideas can provide useful references for the future Chinese millimeter-wave S-VLBI mission.展开更多
On-orbit service spacecraft orbit problem has been addressed for decades. The research of on-orbit service spacecraft orbit can be roughly divided into orbit design and orbit optimization. The paper mainly focuses on ...On-orbit service spacecraft orbit problem has been addressed for decades. The research of on-orbit service spacecraft orbit can be roughly divided into orbit design and orbit optimization. The paper mainly focuses on the orbit design problem. We simply summarize of the previous works, and point out the main content of the on-orbit service spacecraft orbit design. We classify current on-orbit service spacecraft orbit design problem into parking-orbit design, maneuvering-orbit design and servicing-orbit design. Then, we give a detail description of the three specific orbits, and put forward our own ideas on the existed achievements. The paper will provide a meaningful reference for the on-orbit service spacecraft orbital design research.展开更多
A circumlunar free return orbit design model that satisfies manned lunar mission constraints is established. By combining analytical method with numerical method,a serial orbit design strategy from initial value desig...A circumlunar free return orbit design model that satisfies manned lunar mission constraints is established. By combining analytical method with numerical method,a serial orbit design strategy from initial value design to precision solution is proposed. A simulation example is given,and the conclusion indicates that the method has excellent convergence performance and precision. According to a great deal of simulation results solved by the method,the free return orbit characters such as accessible moon orbit parameters,return orbit parameters,transfer delta velocity,etc. are analyzed,which can supply references to constitute manned lunar mission orbit scheme.展开更多
Point return orbit(PRO) of manned lunar mission is constrained by both lunar parking orbit and reentry corridor associated with reentry position.Besides,the fuel consumption and flight time should be economy.The patch...Point return orbit(PRO) of manned lunar mission is constrained by both lunar parking orbit and reentry corridor associated with reentry position.Besides,the fuel consumption and flight time should be economy.The patched conic equations which are adaptive to PRO are derived first,the PRO is modeled with fuel and time constraints based on the design variables of orbit parameters with clear physical meaning.After that,by combining analytical method with numerical method,a serial orbit design strategy from initial value design to precision solution is proposed.Simulation example indicates that the method has excellent convergence performance and precision.According to a great deal of simulation results by the method,the PRO characteristics such as Moon centered orbit parameters,Earth centered orbit parameters,transfer velocity change,etc.are analyzed,which can supply references to the manned lunar mission orbit scheme.展开更多
SVLBI (space very long baseline interferometry) has some important potential applications in geodesy and geodynamics, for which one of the most difficult tasks is to precisely determine the orbit of an SVLBI satelli...SVLBI (space very long baseline interferometry) has some important potential applications in geodesy and geodynamics, for which one of the most difficult tasks is to precisely determine the orbit of an SVLBI satellite. This work studies several technologies that will possibly be able to determine the orbit of a space VLBI satellite. Then, according to the types and charac- teristics of the satellite and the requirements for geodetic study and the geometry of the GNSS (GPS, GALILEO) satellite to track the space VLBI satellite, the six Keplerian elements of the SVLBI satellite (TEST-SVLBI) are determined. A program is designed to analyze the coverage area of space of different altitudes by the stations of the network, with which the tracking network of TEST-SVLBI is designed. The efficiency of tracking TEST-SVLBI by the network is studied, and the results are presented.展开更多
This paper presents the method created by the National University of Defense Technology(NUDT)team in the 10th China Trajectory Optimization Competition,which entails a 3-year observation mission of 180 regions on Jupi...This paper presents the method created by the National University of Defense Technology(NUDT)team in the 10th China Trajectory Optimization Competition,which entails a 3-year observation mission of 180 regions on Jupiter.The proposed method can be divided into three steps.First,a preliminary analysis and evaluation via an analytical method is undertaken to decide whether the third subtask of the mission,i.e.,exploring the Galilean moons,should be ignored.Second,a near-optimal orbit for magnetic field observation is designed by solving an analytical equation.Third,a set of observation windows and their sequence are optimized using a customized genetic algorithm.The final index obtained is 354.505,ranking second out of all teams partaking in the competition.展开更多
The Laser Interferometer Space Antenna (LISA) is a joint ESA-NASA mission for detecting low-frequency gravitational waves in the frequency range from 0.1 mHz to 1 Hz, by using accurate laser interferometry between thr...The Laser Interferometer Space Antenna (LISA) is a joint ESA-NASA mission for detecting low-frequency gravitational waves in the frequency range from 0.1 mHz to 1 Hz, by using accurate laser interferometry between three spacecrafts, which will be launched around 2018 and one year later reach their operational orbits around the Sun. In order to operate successfully, it is crucial for the constellation of the three spacecrafts to have extremely high stability. Based on the study of operational orbits for a 2015 launch, we design the operational orbits of beginning epoch on 2019-03-01, and introduce the method of orbit design and optimization. We design the orbits of the transfer from Earth to the operational orbits, including launch phase and separation phase; furthermore, the relationship between energy requirement and flight time of these two orbit phases is investigated. Finally, an example of the whole orbit design is presented.展开更多
This article addresses the design of the trajectory transferring from Earth to Halo orbit, and proposes a timing closed-loop strategy of correction maneuver during the transfer in the frame of circular restricted thre...This article addresses the design of the trajectory transferring from Earth to Halo orbit, and proposes a timing closed-loop strategy of correction maneuver during the transfer in the frame of circular restricted three body problem (CR3BP). The relation between the Floquet multipliers and the magnitudes of Halo orbit is established, so that the suitable magnitude for the aerospace mission is chosen in terms of the stability of Halo orbit. The stable manifold is investigated from the Poincar6 mapping defined which is different from the previous researches, and six types of single-impulse transfer trajectories are attained from the geometry of the invariant manifolds. Based on one of the trajectories of indirect transfer which are ignored in the most of literatures, the stochastic control theory for imperfect information of the discrete linear stochastic system is applied to design the trajectory correction maneuver. The statistical dispersion analysis is performed by Monte-Carlo simulation,展开更多
Combining with the exigent demand of the development of satellite gravimetry system in China, aiming at the determination of technical indexes of gravity satellite orbit parameters, on the basis of the numerical exper...Combining with the exigent demand of the development of satellite gravimetry system in China, aiming at the determination of technical indexes of gravity satellite orbit parameters, on the basis of the numerical experiments and results analysis, the design indexes of gravity satellite orbit height, inter-satellite range and the orbit inclination are analyzed and calculated, and the issues towards twin gravity satellites such as coherence requirement of the orbit semi-major axes, control requirement of the pitch angle and time interval requirement to keep twin satellites formation in mobility are diseussed. Results show that the satellite orbit height is 400 km to 500 km, the inter-satellite range is about 220 km, the satellite orbit inclination is between polar orbit and sun-synchronous orbit, the semi-major axes difference of twin satellites orbit is within ± 70. 146 m, the pitch angle of twin satellites is about 0.9 degree, and the time interval to keep twin satellites formation in mobility is 7 days to 15 days.展开更多
This letter proposes a method for designing a specific formation of satellites where the flying motion only exists in a circle orbit plane of the reference satellite, which means that the orbit eccentricity is zero. T...This letter proposes a method for designing a specific formation of satellites where the flying motion only exists in a circle orbit plane of the reference satellite, which means that the orbit eccentricity is zero. This method combines the Hill equation, the Kepler equation, and the geometrical inea^ing of orbit elements. It creates the redundancy condition to simplify the deducing process, utilizes multiple conditions to solve the orbit elements for the satellite formation, and obtains the analytical relationship of the orbit elements for the formation satellites with the formation parameters and the orbit elements of the reference satellite. Using these formulations, the orbit elements and formation parameters for the formation satellites can be solved for the given orbit elements of the reference satellite. The letter describes the proposed double-ellipse formation for both GMTI and InSAR, and the validity of the formation is demonstrated via simulation.展开更多
基金supported by the National Natural Science Foundation of China (62001436)the Natural Science Foundation of Jiangsu Province under (BK 20190143,JSGG20190823094603691)。
文摘Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, e.g. SAR interferometry(InSAR) and SAR tomography(TomoSAR), holographic SAR can retrieve 3D structure by observations in azimuth. This paper focuses on designing a novel type of orbit to achieve SAR regional all-azimuth observation(AAO) for embedded targets detection and holographic 3D reconstruction. The ground tracks of the AAO orbit separate the earth surface into grids. Target in these grids can be accessed with an azimuth angle span of360°, which is similar to the flight path of airborne circular SAR(CSAR). Inspired from the successive coverage orbits of optical sensors, several optimizations are made in the proposed method to ensure favorable grazing angles, the performance of 3D reconstruction, and long-term supervision for SAR sensors. Simulation experiments show the regional AAO can be completed within five hours. In addition, a second AAO of the same area can be duplicated in two days. Finally, an airborne SAR data process result is presented to illustrate the significance of AAO in 3D reconstruction.
基金Supported by the Natural Science Foundation of China(40701100,40801136)the Strategic Priority Program on Space Science of the Chinese Academy of Sciences(XDA04060803)
文摘Space Very Long Baseline Interferometry(S-VLBI) is an aperture synthesis technique utilizing an array of radio telescopes including ground telescopes and space orbiting telescopes.It can achieve much higher spatial resolution than that from the ground-only VLBI.In this paper,a new concept of twin spacecraft S-VLBI has been proposed,which utilizes the space-space baselines formed by two satellites to obtain larger and uniform uv coverage without atmospheric influence and hence achieve high quality images with higher angular resolution.The orbit selections of the two satellites are investigated.The imaging performance and actual launch conditions are all taken into account in orbit designing of the twin spacecraft S-VLBI.Three schemes of orbit design using traditional elliptical orbits and circular orbits are presented.These design results can be used for different scientific goals.Furthermore,these designing ideas can provide useful references for the future Chinese millimeter-wave S-VLBI mission.
基金Supported by National Natural Science Foundation of China(Nos.60875046,61202251)Program for Changjiang Scholars and Innovative Research Team in University(No.IRT1109)+4 种基金Key Project of Chinese Ministry of Education(No.209029)Program for Liaoning Excellent Talents in University(No.LR201003)Program for Liaoning Science and Technology Research in University(Nos.LS2010008,LS2010179)Program for Liaoning Innovative Research Team in University(No.LT2011018)Doctoral Fund of Dalian University
文摘On-orbit service spacecraft orbit problem has been addressed for decades. The research of on-orbit service spacecraft orbit can be roughly divided into orbit design and orbit optimization. The paper mainly focuses on the orbit design problem. We simply summarize of the previous works, and point out the main content of the on-orbit service spacecraft orbit design. We classify current on-orbit service spacecraft orbit design problem into parking-orbit design, maneuvering-orbit design and servicing-orbit design. Then, we give a detail description of the three specific orbits, and put forward our own ideas on the existed achievements. The paper will provide a meaningful reference for the on-orbit service spacecraft orbital design research.
基金supported by the National Natural Science Foundation of China (Grant No.10902121)
文摘A circumlunar free return orbit design model that satisfies manned lunar mission constraints is established. By combining analytical method with numerical method,a serial orbit design strategy from initial value design to precision solution is proposed. A simulation example is given,and the conclusion indicates that the method has excellent convergence performance and precision. According to a great deal of simulation results solved by the method,the free return orbit characters such as accessible moon orbit parameters,return orbit parameters,transfer delta velocity,etc. are analyzed,which can supply references to constitute manned lunar mission orbit scheme.
基金supported by the Open Research Foundation of Science and Technology on Aerospace Flight Dynamics Laboratory (Grant No.2012afdl005)
文摘Point return orbit(PRO) of manned lunar mission is constrained by both lunar parking orbit and reentry corridor associated with reentry position.Besides,the fuel consumption and flight time should be economy.The patched conic equations which are adaptive to PRO are derived first,the PRO is modeled with fuel and time constraints based on the design variables of orbit parameters with clear physical meaning.After that,by combining analytical method with numerical method,a serial orbit design strategy from initial value design to precision solution is proposed.Simulation example indicates that the method has excellent convergence performance and precision.According to a great deal of simulation results by the method,the PRO characteristics such as Moon centered orbit parameters,Earth centered orbit parameters,transfer velocity change,etc.are analyzed,which can supply references to the manned lunar mission orbit scheme.
基金Funded by the National 973 Program of China (No. 2006CB701301), the National Natural Science Foundation of China(No.40774007), and the Project of University Education and Research of Hubei Province (No.20053039).
文摘SVLBI (space very long baseline interferometry) has some important potential applications in geodesy and geodynamics, for which one of the most difficult tasks is to precisely determine the orbit of an SVLBI satellite. This work studies several technologies that will possibly be able to determine the orbit of a space VLBI satellite. Then, according to the types and charac- teristics of the satellite and the requirements for geodetic study and the geometry of the GNSS (GPS, GALILEO) satellite to track the space VLBI satellite, the six Keplerian elements of the SVLBI satellite (TEST-SVLBI) are determined. A program is designed to analyze the coverage area of space of different altitudes by the stations of the network, with which the tracking network of TEST-SVLBI is designed. The efficiency of tracking TEST-SVLBI by the network is studied, and the results are presented.
基金This work was supported by the National Natural Science Foundation of China(No.11972044).
文摘This paper presents the method created by the National University of Defense Technology(NUDT)team in the 10th China Trajectory Optimization Competition,which entails a 3-year observation mission of 180 regions on Jupiter.The proposed method can be divided into three steps.First,a preliminary analysis and evaluation via an analytical method is undertaken to decide whether the third subtask of the mission,i.e.,exploring the Galilean moons,should be ignored.Second,a near-optimal orbit for magnetic field observation is designed by solving an analytical equation.Third,a set of observation windows and their sequence are optimized using a customized genetic algorithm.The final index obtained is 354.505,ranking second out of all teams partaking in the competition.
基金support by the Innovative Research Grant for the graduate student of CSA (Grant No. EC0805261026)the National Science Foundation (Grant Nos. 10573037 and 10503013)the Foundation of Minor Planets of Purple Mountain Observatory
文摘The Laser Interferometer Space Antenna (LISA) is a joint ESA-NASA mission for detecting low-frequency gravitational waves in the frequency range from 0.1 mHz to 1 Hz, by using accurate laser interferometry between three spacecrafts, which will be launched around 2018 and one year later reach their operational orbits around the Sun. In order to operate successfully, it is crucial for the constellation of the three spacecrafts to have extremely high stability. Based on the study of operational orbits for a 2015 launch, we design the operational orbits of beginning epoch on 2019-03-01, and introduce the method of orbit design and optimization. We design the orbits of the transfer from Earth to the operational orbits, including launch phase and separation phase; furthermore, the relationship between energy requirement and flight time of these two orbit phases is investigated. Finally, an example of the whole orbit design is presented.
基金National Natural Science Foundation of China (10702003)Innovation Foundation of Beijing University of Aeronautics and Astronautics for Ph.D. Graduates
文摘This article addresses the design of the trajectory transferring from Earth to Halo orbit, and proposes a timing closed-loop strategy of correction maneuver during the transfer in the frame of circular restricted three body problem (CR3BP). The relation between the Floquet multipliers and the magnitudes of Halo orbit is established, so that the suitable magnitude for the aerospace mission is chosen in terms of the stability of Halo orbit. The stable manifold is investigated from the Poincar6 mapping defined which is different from the previous researches, and six types of single-impulse transfer trajectories are attained from the geometry of the invariant manifolds. Based on one of the trajectories of indirect transfer which are ignored in the most of literatures, the stochastic control theory for imperfect information of the discrete linear stochastic system is applied to design the trajectory correction maneuver. The statistical dispersion analysis is performed by Monte-Carlo simulation,
基金supported by the National Natural Science Foundation of China(41174026,41104047,41174017)the Key laboratory Foundation of Geo-space Environment and Geodesy of Ministry of Education(11-01-03)
文摘Combining with the exigent demand of the development of satellite gravimetry system in China, aiming at the determination of technical indexes of gravity satellite orbit parameters, on the basis of the numerical experiments and results analysis, the design indexes of gravity satellite orbit height, inter-satellite range and the orbit inclination are analyzed and calculated, and the issues towards twin gravity satellites such as coherence requirement of the orbit semi-major axes, control requirement of the pitch angle and time interval requirement to keep twin satellites formation in mobility are diseussed. Results show that the satellite orbit height is 400 km to 500 km, the inter-satellite range is about 220 km, the satellite orbit inclination is between polar orbit and sun-synchronous orbit, the semi-major axes difference of twin satellites orbit is within ± 70. 146 m, the pitch angle of twin satellites is about 0.9 degree, and the time interval to keep twin satellites formation in mobility is 7 days to 15 days.
文摘This letter proposes a method for designing a specific formation of satellites where the flying motion only exists in a circle orbit plane of the reference satellite, which means that the orbit eccentricity is zero. This method combines the Hill equation, the Kepler equation, and the geometrical inea^ing of orbit elements. It creates the redundancy condition to simplify the deducing process, utilizes multiple conditions to solve the orbit elements for the satellite formation, and obtains the analytical relationship of the orbit elements for the formation satellites with the formation parameters and the orbit elements of the reference satellite. Using these formulations, the orbit elements and formation parameters for the formation satellites can be solved for the given orbit elements of the reference satellite. The letter describes the proposed double-ellipse formation for both GMTI and InSAR, and the validity of the formation is demonstrated via simulation.