The dynamical behavior of real-world phenomena is implausible graphically due to the complexity of mathematical coding. The present article has mainly focused on some one-dimensional real maps’ dynamical behavior irr...The dynamical behavior of real-world phenomena is implausible graphically due to the complexity of mathematical coding. The present article has mainly focused on some one-dimensional real maps’ dynamical behavior irrespective of using coding. In continuation, linear, quadratic, cubic, higher-order, exponential, logarithmic, and absolute value maps have been used to scrutinize their dynamical behavior, including the characteristics of the orbit of points. Dynamical programming software (DPS.exe) will be proposed as a new technique to ascertain the dynamical behavior of said maps. Thus, a mathematician can automatically determine one-dimensional real maps’ dynamical behavior apart from complicated programming code and analytical solutions.展开更多
In this article, we have discussed basic concepts of one-dimensional maps like Cubic map, Sine map and analyzed their chaotic behaviors in several senses in the unit interval. We have mainly focused on Orbit Analysis,...In this article, we have discussed basic concepts of one-dimensional maps like Cubic map, Sine map and analyzed their chaotic behaviors in several senses in the unit interval. We have mainly focused on Orbit Analysis, Time Series Analysis, Lyapunov Exponent Analysis, Sensitivity to Initial Conditions, Bifurcation Diagram, Cobweb Diagram, Histogram, Mathematical Analysis by Newton’s Iteration, Trajectories and Sensitivity to Numerical Inaccuracies of the said maps. We have tried to make decision about these mentioned maps whether chaotic or not on a unique interval of parameter value. We have performed numerical calculations and graphical representations for all parameter values on that interval and have tried to find if there is any single value of parameter for which those maps are chaotic. In our calculations we have found there are many values for which those maps are chaotic. We have showed numerical calculations and graphical representations for single value of the parameter only in this paper which gives a clear visualization of chaotic dynamics. We performed all graphical activities by using Mathematica and MATLAB.展开更多
文摘The dynamical behavior of real-world phenomena is implausible graphically due to the complexity of mathematical coding. The present article has mainly focused on some one-dimensional real maps’ dynamical behavior irrespective of using coding. In continuation, linear, quadratic, cubic, higher-order, exponential, logarithmic, and absolute value maps have been used to scrutinize their dynamical behavior, including the characteristics of the orbit of points. Dynamical programming software (DPS.exe) will be proposed as a new technique to ascertain the dynamical behavior of said maps. Thus, a mathematician can automatically determine one-dimensional real maps’ dynamical behavior apart from complicated programming code and analytical solutions.
文摘In this article, we have discussed basic concepts of one-dimensional maps like Cubic map, Sine map and analyzed their chaotic behaviors in several senses in the unit interval. We have mainly focused on Orbit Analysis, Time Series Analysis, Lyapunov Exponent Analysis, Sensitivity to Initial Conditions, Bifurcation Diagram, Cobweb Diagram, Histogram, Mathematical Analysis by Newton’s Iteration, Trajectories and Sensitivity to Numerical Inaccuracies of the said maps. We have tried to make decision about these mentioned maps whether chaotic or not on a unique interval of parameter value. We have performed numerical calculations and graphical representations for all parameter values on that interval and have tried to find if there is any single value of parameter for which those maps are chaotic. In our calculations we have found there are many values for which those maps are chaotic. We have showed numerical calculations and graphical representations for single value of the parameter only in this paper which gives a clear visualization of chaotic dynamics. We performed all graphical activities by using Mathematica and MATLAB.