期刊文献+
共找到1,733篇文章
< 1 2 87 >
每页显示 20 50 100
Influence of the position relationship between the cathode and magnetic separatrix on the discharge process of a Hall thruster
1
作者 曹希峰 麻洪宁 +4 位作者 夏国俊 刘辉 赵方舟 王宇航 陈巨辉 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第1期74-81,共8页
Previous studies have shown that there is an obvious coupling relationship between the installation location of the external cathode and the magnetic separatrix in the plume region of a Hall thruster.In this paper,the... Previous studies have shown that there is an obvious coupling relationship between the installation location of the external cathode and the magnetic separatrix in the plume region of a Hall thruster.In this paper,the particle-in-cell simulation method is used to compare the thruster discharge process under the conditions of different position relationships between the cathode and the magnetic separatrix.By comparing the distribution of electron conduction,potential,plasma density and other microscopic parameters,we try to explain the formation mechanism of the discharge difference.The simulation results show that the cathode inside and outside the magnetic separatrix has a significant effect on the distribution of potential and plasma density.When the cathode is located on the outer side of the magnetic separatrix,the potential above the plume region is relatively low,and there is a strong potential gradient above the plume region.This potential gradient is more conducive to the radial diffusion of ions above the plume,which is the main reason for the strong divergence of the plume.The distribution of ion density is also consistent with the distribution of potential.When the cathode is located on the outer side of the magnetic separatrix,the radial diffusion of ions in the plume region is enhanced.Meanwhile,by comparing the results of electron conduction,it is found that the traiectories of electrons emitted from the cathode are significantly different between the inner and outer sides of the magnetic separatrix.This is mainly because the electrons are affected by the magnetic mirror effect of the magnetic tip,which makes it difficult for the electrons to move across the magnetic separatrix.This is the main reason for the difference in potential distribution.In this paper,the simulation results of macroscopic parameters under several conditions are also compared,and they are consistent with the experimental results.The cathode is located on the inner side of the magnetic separatrix,which can effectively reduce the plume divergence angle and improve the thrust.In this paper,the cathode moves from R=50 mm to R=35 mm along the radial direction,the thrust increases by 3.6 mN and the plume divergence angle decreases by 23.77%.Combined with the comparison of the ionization region and the peak ion density,it is found that the main reason for the change in thrust is the change in the radial diffusion of ions in the plume region. 展开更多
关键词 Hall thruster CATHODE magnetic separatrix
下载PDF
Performance investigation of a low-power Hall thruster fed on iodine propellant
2
作者 徐宗琦 王平阳 +2 位作者 蔡东升 谭睿 姜文静 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第6期140-148,共9页
The common propellants used for electric thrusters, such as xenon and krypton, are rare, expensive,and difficult to acquire. Solid iodine attracts much attention with the advantages of low cost,extensive availability,... The common propellants used for electric thrusters, such as xenon and krypton, are rare, expensive,and difficult to acquire. Solid iodine attracts much attention with the advantages of low cost,extensive availability, low vapor pressure, and ionization potential. The performance of a lowpower iodine-fed Hall thruster matched with a xenon-fed cathode is investigated across a broad range of operation conditions. Regulation of the iodine vapor's mass flow rates is stably achieved by using a temperature control method of the iodine reservoir. The thrust measurements are finished utilizing a thrust target during the tests. Results show that thrust and anode-specific impulse increase approximately linearly with the increasing iodine mass flow rate.At the nominal power of 200 W class, iodine mass flow rates are 0.62 and 0.93 mg/s, thrusts are7.19 and 7.58 m N, anode specific impulses are 1184 and 826 s, anode efficiencies are 20.8%and 14.5%, and thrust to power ratios are 35.9 and 37.9 m N/k W under the conditions of 250 V,0.8 A and 200 V, 1.0 A, respectively. The operating characteristics of iodine-fed Hall thruster are analyzed in different states. Further work on the measurements of plasma characteristics and experimental optimization will be carried out. 展开更多
关键词 electric propulsion Hall thruster iodine propellant thrust measurement operating characteristics
下载PDF
Influence of acceleration stage electrode voltage on the performance of double-stage Hall effect thruster with adjustable zero magnetic point
3
作者 陈龙 高维富 +5 位作者 崔作君 段萍 许雪松 阚子晨 檀聪琦 陈俊宇 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第6期60-69,共10页
The configuration of electrode voltage and zero magnetic point position has a significant impact on the performance of the double-stage Hall effect thruster. A 2D-3V model is established based on the two-magnetic peak... The configuration of electrode voltage and zero magnetic point position has a significant impact on the performance of the double-stage Hall effect thruster. A 2D-3V model is established based on the two-magnetic peak type double-stage Hall thruster configuration, and a particle-in-cell simulation is carried out to investigate the influences of both acceleration electrode voltage value and zero magnetic point position on the thruster discharge characteristics and performances.The results indicate that increasing the acceleration voltage leads to a larger potential drop in the acceleration stage, allowing ions to gain higher energy, while electrons are easily absorbed by the intermediate electrode, resulting in a decrease in the anode current and ionization rate. When the acceleration voltage reaches 500 V, the thrust and efficiency are maximized, resulting in a 15%increase in efficiency. After the acceleration voltage exceeds 500 V, a potential barrier forms within the channel, leading to a decrease in thruster efficiency. Further study shows that as the second zero magnetic point moves towards the outlet of the channel, more electrons easily traverse the zero magnetic field region, participating in the ionization. The increase in the ionization rate leads to a gradual enhancement in both thrust and efficiency. 展开更多
关键词 Hall thruster particle-in-cell simulation intermediate electrode zero magnetic point
下载PDF
Growth mechanism and characteristics of electron drift instability in Hall thruster with different propellant types
4
作者 陈龙 阚子晨 +4 位作者 高维富 段萍 陈俊宇 檀聪琦 崔作君 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期511-522,共12页
The existence of a significant electron drift instability(EDI) in the Hall thruster is considered as one of the possible causes of the abnormal increase in axial electron mobility near the outlet of the channel. In re... The existence of a significant electron drift instability(EDI) in the Hall thruster is considered as one of the possible causes of the abnormal increase in axial electron mobility near the outlet of the channel. In recent years, extensive simulation research on the characteristics of EDI has been conducted, but the excitation mechanism and growth mechanism of EDI in linear stage and nonlinear stage remain unclear. In this work, a one-dimensional PIC model in the azimuthal direction of the thruster near-exit region is established to gain further insights into the mechanism of the EDI in detail, and the effects of different types of propellants on EDI characteristics are discussed. The changes in axial electron transport caused by EDI under different types of propellants and electromagnetic field strengths are also examined. The results indicate that EDI undergoes a short linear growth phase before transitioning to the nonlinear phase and finally reaching saturation through the ion Landau damping. The EDI drives a significant ion heating in the azimuthal direction through electron–ion friction before entering the quasi-steady state, which increases the axial mobility of the electrons. Using lighter atomic weight propellant can effectively suppress the oscillation amplitude of EDI, but it will increase the linear growth rate, frequency, and phase velocity of EDI. Compared with the classical mobility, the axial electron mobility under the EDI increases by three orders of magnitude, which is consistent with experimental phenomena. The change of propellant type is insufficient to significantly change the axial electron mobility. It is also found that the collisions between electrons and neutral gasescan significantly affect the axial electron mobility under the influence of EDI, and lead the strength of the electric field to increase and the strength of the magnetic field to decrease, thereby both effectively suppressing the axial transport of electrons. 展开更多
关键词 Hall thruster electron drift instability axial electron mobility particle-in-cell simulation
下载PDF
Performance of pulsed plasma thruster at low discharge energy
5
作者 李鸿俊 林泽豪 +3 位作者 胡浩俊 吴文东 陈爱虹 杜德扬 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第4期122-132,共11页
As the size of satellites scales down, low-power and compact propulsion systems such as the pulsed plasma thruster(PPT) are needed for stabilizing these miniature satellites in orbit. Most PPT systems are operated at ... As the size of satellites scales down, low-power and compact propulsion systems such as the pulsed plasma thruster(PPT) are needed for stabilizing these miniature satellites in orbit. Most PPT systems are operated at 2 J or more of discharge energy. In this work, the performance of a PPT with a side-fed, tongue-flared electrode configuration operated within a lower discharge energy range of 0.5-2.5 J has been investigated. Ablation and charring of the polytetrafluoroethylene propellant surface were analyzed through field-effect scanning electron microscopy imaging and energy-dispersive X-ray spectroscopy. When the discharge energy fell below 2 J, inconsistencies occurred in the specific impulse and the thrust efficiency due to the measurement of the low mass bit. At energy ≥2 J, the performance parameters are compared with other PPT systems of similar configuration and discussed in depth. 展开更多
关键词 pulsed plasma thruster low discharge energy performance parameters
下载PDF
Experimental investigation of the polarityswitching process with different bipolar ionic liquid thruster operating frequencies
6
作者 吴湘蓓 杨铖 +1 位作者 罗嘉伟 沈岩 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第6期1-13,共13页
The bipolar ionic liquid thruster employs ionic liquid as a propellant to discharge positively and negatively charged high-energy particles under an alternating current(AC)power source,effectively suppressing electroc... The bipolar ionic liquid thruster employs ionic liquid as a propellant to discharge positively and negatively charged high-energy particles under an alternating current(AC)power source,effectively suppressing electrochemical reaction and ensuring charge neutrality.Determining an optimal AC supply power source frequency is critical for sustained stable thruster operation.This study focuses on the emission characteristics of the ionic liquid thruster under varied AC conditions.The AC power supply was set within the frequency range of 0.5-64 Hz,with eight specific frequency conditions selected for experimentation.The experimental results indicate that the thruster operates steadily within a voltage range of±1470 to±1920 V,with corresponding positive polarity current ranging from 0.41 to 4.91μA and negative polarity current ranging from−0.49 to−4.10μA.During voltage polarity switching,an emission delay occurs,manifested as a prominent peak signal caused by circuit capacitance characteristics and a minor peak signal resulting from liquid droplets.Extended emission test was conducted at 16 Hz,demonstrating approximately 1 h and 50 min of consistent emission before intermittent discharge.These findings underscore the favorable impact of AC conditions within the 8-16 Hz range on the self-neutralization capability of the ionic liquid thruster. 展开更多
关键词 space electric propulsion ionic liquid thruster bipolar operation mode FREQUENCY
下载PDF
Power transfer efficiency in an air-breathing radio frequency ion thruster
7
作者 黄高煌 李宏 +1 位作者 高飞 王友年 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期430-438,共9页
Due to a series of challenges such as low-orbit maintenance of satellites, the air-breathing electric propulsion has got widespread attention. Commonly, the radio frequency ion thruster is favored by low-orbit mission... Due to a series of challenges such as low-orbit maintenance of satellites, the air-breathing electric propulsion has got widespread attention. Commonly, the radio frequency ion thruster is favored by low-orbit missions due to its high specific impulse and efficiency. In this paper, the power transfer efficiency of the radio frequency ion thruster with different gas compositions is studied experimentally, which is obtained by measuring the radio frequency power and current of the antenna coil with and without discharge operation. The results show that increasing the turns of antenna coils can effectively improve the radio frequency power transfer efficiency, which is due to the improvement of Q factor. In pure N_2 discharge,with the increase of radio frequency power, the radio frequency power transfer efficiency first rises rapidly and then exhibits a less steep increasing trend. The radio frequency power transfer efficiency increases with the increase of gas pressure at relatively high power, while declines rapidly at relatively low power. In N_(2)/O_(2) discharge, increasing the N_(2) content at high power can improve the radio frequency power transfer efficiency, but the opposite was observed at low power. In order to give a better understanding of these trends, an analytic solution in limit cases is utilized, and a Langmuir probe was employed to measure the electron density. It is found that the evolution of radio frequency power transfer efficiency can be well explained by the variation of plasma resistance, which is related to the electron density and the effective electron collision frequency. 展开更多
关键词 radio frequency ion thruster inductively coupled plasma power transfer efficiency analytic solution
下载PDF
Study on Characteristics of a High-Precision Cold Gas Micro Thruster
8
作者 Zhaoli Wang Changbin Guan +2 位作者 Xudong Wang Weijie Zheng Longfei Su 《Engineering(科研)》 2024年第1期38-45,共8页
In order to improve the reliability of the spacecraft micro cold gas propulsion system and realize the precise control of the spacecraft attitude and orbit, a micro-thrust, high-precision cold gas thruster is carried ... In order to improve the reliability of the spacecraft micro cold gas propulsion system and realize the precise control of the spacecraft attitude and orbit, a micro-thrust, high-precision cold gas thruster is carried out, at the same time due to the design requirements of the spacecraft, this micro-thrust should be continuous working more than 60 minutes, the traditional solenoid valve used for the thrusts can’t complete the mission, so a long-life micro latching valve is developed as the control valve for this micro thruster, because the micro latching valve can keep its position when it cuts off the outage. Firstly, the authors introduced the design scheme and idea of the thruster. Secondly, the performance of the latching valve and the flow characteristics of the nozzle were simulated. Finally, from the experimental results and compared with the numerical study, it shows that the long-life micro cold gas thruster developed in this paper meets the mission requirements. 展开更多
关键词 High-Precision Micro thruster Performance Flow Characteristic EXPERIMENT
下载PDF
A study of the influence of different grid structures on plasma characteristics in the discharge chamber of an ion thruster 被引量:1
9
作者 孙明明 龙建飞 +2 位作者 郭伟龙 刘超 赵勇 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第1期147-156,共10页
The grid structure has significant effects on the discharge characteristics of an ion thruster.The discharge performances of a 30 cm diameter ion thruster with flat,convex and concave grids are studied.The analysis re... The grid structure has significant effects on the discharge characteristics of an ion thruster.The discharge performances of a 30 cm diameter ion thruster with flat,convex and concave grids are studied.The analysis results show that the discharge chamber with a convex grid has a larger’magnetic-field free area’than the others,and the parallelism of the magnetic-field isopotential lines and anode is generally the same in the three models.Plasma densities of the three structures at the grid outlet are in the range of 3.1×1016-6.9×1017m-3.Along the thruster axis direction,the electron temperature in the chamber with the convex and concave grids is in the range of 3.3-3.5 eV,while that with a flat grid is lower,in the range of 3.1-3.5 eV.In addition,the convex and the concave grids have better uniform distribution of electron temperature.Moreover,the collision frequency ratios show that the axial degree of ionization of the three models is the highest,and the flat grid has the highest discharge efficiency,followed by the convex grid and the concave grid is the least efficient.The test and simulation results of the 30 cm diameter ion thruster with the convex grid show that the measurement and calculation results are 3.67 A and 3.44 A,respectively,and the error above mainly comes from the ignorance of the doubly charged ions and parameter settings in the model.The comparison error between the simulation and measurement of beam current density is mainly caused by the actual thermal deformation of the grids during the discharge process,which leads to the change in electric potential distribution and variation of the focusing characteristics of the grids.Upon consideration of discharge performance and the thermal grid gap variation,it can be concluded that the flat and concave grids are more suitable for small-diameter ion thrusters,while the convex grid is a more reasonable choice for the higher-power and larger-diameter thrusters. 展开更多
关键词 ion thruster the grids discharge characteristics
下载PDF
Influence of neutral gas supply position on wall erosion of Hall thruster studied by particle-in-cell simulation
10
作者 曹希峰 夏国俊 +2 位作者 刘辉 陈巨辉 于达仁 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第5期184-192,共9页
In this work,we have carried out a simulation study on the discharge process of Hall thrusters under the conditions of different neutral gas radial supply positions based on the particle-in-cell(PIC)and Monte Carlo co... In this work,we have carried out a simulation study on the discharge process of Hall thrusters under the conditions of different neutral gas radial supply positions based on the particle-in-cell(PIC)and Monte Carlo collision(MCC)methods.This paper compares the two-dimensional(2D)distributions of neutral gas,plasma and wall erosion-related parameters under different neutral gas supply positions.The comparison results show that the change of the neutral gas supply position affects the radial distribution uniformity of the neutral gas and plasma in the channel.From the comparison of the density peaks,it can be found that the neutral gas density and the plasma density peak under the upper gas supply condition are relatively low,and the plasma density peak is 22.49%lower than the density peak under the middle gas supply condition.Meanwhile,as the radial position of the gas supply moves from the lower gas supply to the upper gas supply,the position of the ionization zone also gradually moves toward the anode.The results of erosion-related parameter distribution comparison show that the change of gas supply location has an obvious influence on erosion rate and erosion range.In terms of erosion rate,the wall erosion rate is relatively low under the upper gas supply condition,and the peak erosion rates of the inner and outer walls are 33.3%and 29.9%lower than those under the other two conditions.In terms of erosion range,as the gas supply position moves from the lower gas supply position to the upper gas supply position,the erosion range gradually increases from5 to 7.5 mm. 展开更多
关键词 Hall thruster neutral gas wall erosion
下载PDF
Experimental study of a neutralizer-free gridded ion thruster using radio-frequency self-bias effect
11
作者 杨智 郭宏辉 +3 位作者 白进纬 李阳 曹勇 朱雨 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第4期164-174,共11页
An experimental study on the quasi-neutral beam extracted by a neutralizer-free gridded ion thruster prototype was presented.The prototype was designed using an inductively coupled plasma source terminated by a double... An experimental study on the quasi-neutral beam extracted by a neutralizer-free gridded ion thruster prototype was presented.The prototype was designed using an inductively coupled plasma source terminated by a double-grid accelerator.The beam characteristics were compared when the accelerator was radio-frequency(RF)biased and direct-current(DC)biased.An RF power supply was applied to the screen grid via a blocking capacitor for the RF acceleration,and a DC power supply was directly connected to the screen grid for the DC acceleration.Argon was used as the propellant gas.Furthermore,the characteristics of the plasma beam,such as the floating potential,the spatial distribution of ion flux,and the ion energy distribution function(IEDF)were measured by a four-grid retarding field energy analyzer.The floating potential results showed that the beam space charge is compensated in the case of RF acceleration without a neutralizer,which is similar to the case of classical DC acceleration with a neutralizer.The ion flux of RF acceleration is 1.17 times higher than that of DC acceleration under the same DC component voltage between the double-grid.Moreover,there are significant differences in the beam IEDFs for RF and DC acceleration.The IEDF of RF acceleration has a widened and multipeaked profile,and the main peak moves toward the high-energy region with increasing the DC self-bias voltage.In addition,by comparing the IEDFs with RF acceleration frequencies of3.9 and 7.8 MHz,it is found that the IEDF has a more centered main peak and a narrower energy spread at a higher frequency. 展开更多
关键词 gridded ion thruster neutralizer-free RF acceleration plasma beam
下载PDF
Experimental and numerical simulation study of the effect for the anode positions on the discharge characteristics of 300W class low power Hall thrusters
12
作者 陈新伟 高俊 +5 位作者 杨三祥 耿海 郭宁 顾左 杨俊泰 张宏 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第1期100-110,共11页
Low-power Hall thruster(LHT) generally has poor discharge efficiency characteristics due to the large surface-to-volume ratio.Aiming to further refine and improve the performance of 300 W class LHT in terms of thrust ... Low-power Hall thruster(LHT) generally has poor discharge efficiency characteristics due to the large surface-to-volume ratio.Aiming to further refine and improve the performance of 300 W class LHT in terms of thrust and efficiency,and to obtain the most optimal operating point,the experimental study of the discharge characteristics for three different anode positions was conducted under the operation of various discharge voltages(100-400 V) and anode mass flow rates(0.65 mg·s-1and 0.95 mg·s-1).The experimental results indicated that the thruster has the most excellent performance in terms of thrust and efficiency etc at a channel length of 27 mm for identical operating conditions.In addition,particle in cell simulations,employed to reveal the underlying physical mechanisms,show that the ionization and acceleration zone is pushed downwards towards the channel exit as the anode moves towards the exit.At the identical operating point,when the channel length is reduced from 32 to 27 mm,the ionization and acceleration zone moves towards the exit,and the parameters such as thrust and efficiency increase due to the high ionization rate,ion number density,and axial electric field.When the channel length is further moved to 24 mm,the parameters in terms of thrust(F) and efficiency(ηa) are reduced as a result of the decreasing ionization efficiency(ηm) and the larger plume divergence angle(α).In this paper,the results indicated that an optimum anode position(ΔL=27 mm) exists for the optimum performance. 展开更多
关键词 low-power Hall thruster discharge characteristics PIC-MCC simulation anode positions
下载PDF
Endurance-test and theoretical prediction of a rare earth nanocathode for the applied field magnetoplasmadynamic thruster
13
作者 王戈 李永 +8 位作者 周成 魏延明 孔春才 郑学程 张心霨 杨志懋 郑金星 丛云天 王宝军 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第10期49-59,共11页
The erosion loss of cathode is essential for the lifetime of magnetoplasmadynamic thruster(MPDT).In this work,an endurance test system for MPDT cathodes was designed and developed,and the erosion characteristics,erosi... The erosion loss of cathode is essential for the lifetime of magnetoplasmadynamic thruster(MPDT).In this work,an endurance test system for MPDT cathodes was designed and developed,and the erosion characteristics,erosion rate and erosion mechanism of the cathode were studied using the system under vacuum condition.The WCe20 hollow cathode was selected to carry out the long-term erosion of 540 h with the argon propellant supply flow rate of40 ml min^(-1),the input current of 25 A,and the central magnetic field intensity of 96 Gs.In order to predict the theoretical service life of cathode,a steady state erosion numerical model was established.The calculation results show that the total erosion rate of sputtering and evaporation is 11.58 mg h^(-1),which is slightly smaller than the test data of the average cathode corrosion rate of 12.70 mg h^(-1) in the experiment,because the experimental value includes start-up erosion rate. 展开更多
关键词 magnetoplasma dynamic thruster nano-oxide cathode ablation models
下载PDF
A study of grid failure mode drivers and methods for accelerated life testing of a 30cm diameter ion thruster
14
作者 孙明明 龙建飞 +3 位作者 陈娟娟 杨威 郭伟龙 陈新伟 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第11期122-132,共11页
In view of the high cost caused by the 1:1 lifetime verification test of ion thrusters,the lifetime acceleration test should be considered.This work uses the PIC-MCC(Particle-in-Cell MonteCarlo Collision)method to ana... In view of the high cost caused by the 1:1 lifetime verification test of ion thrusters,the lifetime acceleration test should be considered.This work uses the PIC-MCC(Particle-in-Cell MonteCarlo Collision)method to analyze the five failure factors that lead to the failure of the accelerator grid of a 30 cm diameter ion thruster under the working mode of 5 k W.Meanwhile,the acceleration stress levels corresponding to different failure factors are obtained.The results show that background pressure has the highest stress level on the grid's erosion.The accelerator grid aperture's mass sputtering rate under the rated vacuum degree(1×10^(-4)Pa)of 5 k W work mode is 8.78 times that of the baseline vacuum degree(1×10^(-6)Pa),and the mass sputtering rate under worse vacuum degree(5×10^(-3)Pa)is 5.08 times that of 1×10^(-4)Pa.Under the influence of the other four failure factors,namely,the voltage of the accelerator grid,upstream plasma density,the screen grid voltage and mass utilization efficiency,the mass sputtering rates of the accelerator grid hole are 2.32,2.67,1.98 and 2.51 times those of the accelerator grid hole under baseline condition,respectively.The ion sputtering results of two 30 cm diameter ion thrusters(both installed with new grids assembly)after working for 1000 h show that the mass sputtering rate of the accelerator grid hole under vacuum conditions of 5×10^(-3)Pa is 4.54 times that under the condition of 1×10^(-4)Pa,and the comparison error between simulation results and test results of acceleration stress is about 10%.In the subsequent ion thruster lifetime verification,the working vacuum degree can be adjusted according to the acceleration stress level of background pressure,so as to shorten the test time and reduce the test cost. 展开更多
关键词 ion thruster failure factors acceleration stress level
下载PDF
Numerical study of the radio-frequency biased accelerating system in ion thrusters
15
作者 白进纬 曹勇 +3 位作者 李阳 王开发 田滨 胡远 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第8期87-102,共16页
A 2D-3V implicit immersed-finite-element particle-in-cell(IFE-PIC)model is introduced to investigate the radio-frequency(RF)self-bias accelerating system applied in the RF ion thruster.A set of holes in a two-grid sys... A 2D-3V implicit immersed-finite-element particle-in-cell(IFE-PIC)model is introduced to investigate the radio-frequency(RF)self-bias accelerating system applied in the RF ion thruster.A set of holes in a two-grid system with slit apertures is simulated in Cartesian coordinates.The characteristics of the plasma plume,such as the ion density,the neutralization rate and the ion and electron current density were investigated for different RF voltage amplitudes(600-1200V)and frequencies(6-30 MHz).Furthermore,the performance of the thruster was also carefully studied.The simulation results show that a well-focused plasma beam can be formed when the voltage amplitude is larger than 900 V and the frequency exceeds the reciprocal of ion transit time(≥12 MHz)in our simulation cases.The performance of the system can be evidently improved by increasing the voltage amplitude and the frequency,and the losses of the particle and thrust are reduced correspondingly.The bulk region of the plasma beam downstream shows good quasi-neutrality,and the ions are dominant in the peripheral region when a well-focused state is achieved.The high ion density beamlet in the periphery of the ion beam is closer to the axis when the voltage amplitude is increasing,while it is expanded radially when increasing the frequency.Backstream electrons have been observed upstream,and this mainly occurs in the phase in which the electron cannot escape. 展开更多
关键词 ion thruster radio-frequency biased grids implicit immersed-finite-element particlein-cell plasma plume
下载PDF
Cathode position effects on microwave discharge cusped field thruster
16
作者 曾明 刘辉 +2 位作者 陈野 于达仁 黄洪雁 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第4期120-127,共8页
The microwave discharge cusped field thruster is a novel concept of electric micropropulsion device,which operatesμN level thrust in low mass flow rate conditions,making use of a coaxial transmission line resonator.W... The microwave discharge cusped field thruster is a novel concept of electric micropropulsion device,which operatesμN level thrust in low mass flow rate conditions,making use of a coaxial transmission line resonator.With its advantages of low thrust noise and high thrust resolution over a wide range of thrust,the thruster has emerged as a candidate thruster for the space-borne gravitational wave detection mission.The cathode effects commonly exist in many kinds of electric propulsion,and they are typically significant in micropropulsions.In order to find out the cathode position effects on a microwave discharge cusped field thruster,a thermionic cathode is mounted on a cross-slider for coupling.Under different cathode positions,the plume is analyzed by a Faraday probe and a retarding potential analyzer to analyze the performance and discharge characteristics.The results show that the magnetic mirror effect leads to significant degradation of anode current and an increase in low-energy ion ratio as the cathode moves away from the thruster exit.The electron conduction route also significantly impacts anode current efficiency,related to the cathode-exit distance and the thruster magnetic topology. 展开更多
关键词 cusped field thruster cathode coupling microwave plasma micro propulsion thermionic cathode
下载PDF
Numerical study of viscosity and heat flux role in heavy species dynamics in Hall thruster discharge
17
作者 Andrey SHASHKOV Alexander LOVTSOV +1 位作者 Dmitri TOMILIN Dmitrii KRAVCHENKO 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第1期165-180,共16页
A two-and three-dimensional velocity space axisymmetric hybrid-PIC model of Hall thruster discharge called Hybrid2D has been developed.The particle-in-cell(PIC) method was used for neutrals and ions(heavy species),and... A two-and three-dimensional velocity space axisymmetric hybrid-PIC model of Hall thruster discharge called Hybrid2D has been developed.The particle-in-cell(PIC) method was used for neutrals and ions(heavy species),and fluid dynamics on a magnetic field-aligned(MFA) mesh was used for electrons.A time-saving method for heavy species moment interpolation on a MFA mesh was developed.The method comprises using regular rectangle and irregular triangle meshes,connected to each other on a pre-processing stage.The electron fluid model takes into account neither inertia terms nor viscous terms and includes an electron temperature equation with a heat flux term.The developed model was used to calculate all heavy species moments up to the third one in a stationary case.The analysis of the viscosity and the heat flux impact on the force and energy balance has shown that for the calculated geometry of the Hall thruster,the viscosity and the heat flux terms have the same magnitude as the other terms and could not be omitted.Also,it was shown that the heat flux is not proportional to the temperature gradient and,consequently,the highest moments should be calculated to close the neutral fluid equation system.At the same time,ions can only be modeled as a cold non-viscous fluid when the sole aim of modeling is the calculation of the operating parameters or distribution of the local parameters along the centerline of the discharge channel.This is because the magnitude of the viscosity and the temperature gradient terms are negligible at the centerline.However,when a simulation’s focus is either on the radial divergence of the plume or on magnetic pole erosion,three components of the ion temperature should be taken into consideration.The non-diagonal terms of ion pressure tensor have a lower impact than the diagonal terms.According to the study,a zero heat flux condition could be used to close the ion equation system in calculated geometry. 展开更多
关键词 Hall thruster hybrid-PIC model moments of distribution function magnetic-field-aligned mesh
下载PDF
Study of beam divergence and thrust vector eccentricity characteristics of the Hall thruster based on dual Faraday probe array planes and its applications
18
作者 陈新伟 赵勇 +11 位作者 田恺 高俊 孙明明 孙新锋 郭宁 张宏 王尚民 冯杰 陈焘 耿海 杨俊泰 史楷 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第5期104-115,共12页
The accurate knowledge of the thrust vector eccentricity and beam divergence characteristics of Hall thrusters are of significant engineering value for the beneficial integration and successful application of Hall thr... The accurate knowledge of the thrust vector eccentricity and beam divergence characteristics of Hall thrusters are of significant engineering value for the beneficial integration and successful application of Hall thrusters on spacecraft.For the characteristics of the plume bipolar diffusion due to the annular discharge channel of the Hall thruster,a Gaussian-fitted method for thrust vector deviation angle and beam divergence of Hall thrusters based on dual Faraday probe array planes was proposed in respect of the Hall thruster beam characteristics.The results show that the ratios of the deviation between the maximum and minimum values of the beam divergence angle and the thrust vector eccentricity angle using a Gaussian fit to the optimized Faraday probe dual plane to the mean value are 1.4%and 11.5%,respectively.The optimized thrust vector eccentricity angle obtained has been substantially improved,by approximately 20%.The beam divergence angle calculated using a Gaussian fitting to the optimized Faraday probe dual plane is approximately identical to the non-optimized one.The beam divergence and thrust vector eccentricity angles for different anode mass flow rates were obtained by averaging the beam divergence and thrust vector eccentricity angles calculated by the dual-plane,Gaussian-fitted ion current density method for different cross-sections.The study not only allows for an immediate and effective tool for determining the design of thrust vector adjustment mechanisms of spacecraft with different power Hall thrusters but also for characterizing the 3D spatial distribution of the Hall thruster plume. 展开更多
关键词 Hall thruster beam divergence thrust vector eccentricity dual Faraday probe array planes
下载PDF
嫦娥六号环月飞行双环容错姿态控制
19
作者 张洪华 关轶峰 +11 位作者 李骥 于洁 陈尧 王志文 张晓文 张录晨 李林峰 孙国健 王振华 郭敏文 李晓锋 高锡珍 《中国空间科学技术(中英文)》 CSCD 北大核心 2024年第5期15-22,共8页
嫦娥六号着陆器和上升器组合体(着上组合体)环月飞行阶段,利用安装于上升器的10 N发动机(可形成力偶控制方式)和安装于着陆器的150 N发动机进行姿态控制。根据发动机安装布局,当力偶控制方式下某10 N发动机常关故障、其配对使用的10 N... 嫦娥六号着陆器和上升器组合体(着上组合体)环月飞行阶段,利用安装于上升器的10 N发动机(可形成力偶控制方式)和安装于着陆器的150 N发动机进行姿态控制。根据发动机安装布局,当力偶控制方式下某10 N发动机常关故障、其配对使用的10 N发动机正常工作时,推进系统将产生与期望相反的控制力矩,导致姿态发散。为了保证在10 N发动机故障情况下着上组合体姿态稳定,给出了双环容错姿态控制策略,包括10 N发动机内环控制和150 N发动机外环控制。数学仿真结果表明,着上组合体环月飞行阶段双环容错姿态控制下,10 N发动机故障后,着上组合体姿态可以稳定在给定范围内。针对配置力偶姿控发动机和冗余发动机的探测器,采用双环容错姿态控制策略,可以有效应对力偶姿控发动机故障影响,保证探测器姿态稳定。 展开更多
关键词 嫦娥六号 环月 发动机 容错 姿态控制 相平面
下载PDF
200 N推力装置上肼类分解催化剂的应用性能
20
作者 徐涛 李宁 +5 位作者 贺子君 贾勐 张中柱 邢钢 赵孟超 杜宗罡 《火箭推进》 CAS 北大核心 2024年第5期148-156,共9页
研究制备了一种单组元姿轨控发动机用肼类分解催化剂,采用200 N推力装置对其应用性能进行了研究和考察。在催化剂物化性能指标满足应用要求的基础上,利用200 N推力装置通过力学环境试验考察了催化剂力学环境适应性,通过双-10℃低温冷启... 研究制备了一种单组元姿轨控发动机用肼类分解催化剂,采用200 N推力装置对其应用性能进行了研究和考察。在催化剂物化性能指标满足应用要求的基础上,利用200 N推力装置通过力学环境试验考察了催化剂力学环境适应性,通过双-10℃低温冷启动、低温稳态及脉冲、正负拉偏以及脉冲寿命热试考核程序考察了自制催化剂的低温冷启动性能、低温稳态性能、常温正负拉偏稳态性能以及脉冲寿命性能。结果表明:该催化剂肼催化分解效率在99%以上,机械强度高且力学环境适应性良好,具有较高的肼催化分解活性和稳定性,能够在200 N推力装置上于双-10℃正常启动,顺利完成了低温稳态、常温正负拉偏和脉冲寿命等考核程序,发动机室压平稳,响应特性良好,脉冲一致性好,可满足推力装置的使用要求。 展开更多
关键词 肼类分解催化剂 单组元姿轨控发动机 200 N推力装置 热试考核
下载PDF
上一页 1 2 87 下一页 到第
使用帮助 返回顶部