Orbital angular momentum(OAM)holography has become a promising technique in information encryption,data storage and opto-electronic computing,owing to the infinite topological charge of one single OAM mode and the ort...Orbital angular momentum(OAM)holography has become a promising technique in information encryption,data storage and opto-electronic computing,owing to the infinite topological charge of one single OAM mode and the orthogonality of different OAM modes.In this paper,we propose a novel OAM hologram generation method based on a densely connected U-net(DCU),where the densely connected convolution blocks(DCB)replace the convolution blocks of the U-net.Importantly,the reconstruction process of the OAM hologram is integrated into DCU as its output layer,so as to eliminate the requirement to prepare training data for the OAM hologram,which is required by conventional neural networks through an iterative algorithm.The experimental and simulation results show that the OAM hologram can rapidly be generated with the well-trained DCU,and the reconstructed image's quality from the generated OAM hologram is significantly improved in comparison with those from the Gerchberg-Saxton generation method,the Gerchberg-Saxton based generation method and the U-net method.In addition,a 10-bit OAM multiplexing hologram scheme is numerically demonstrated to have a high capacity with OAM hologram.展开更多
Orbital angular momentum(OAM)technology,refers to Laguerre-Gaussian(LG)beams,twisted beams,vector/vortex beams,acoustic vortex beams and fractional vortex beams.It is an emerging and promising technology to improve th...Orbital angular momentum(OAM)technology,refers to Laguerre-Gaussian(LG)beams,twisted beams,vector/vortex beams,acoustic vortex beams and fractional vortex beams.It is an emerging and promising technology to improve the communication capacity,spectral efficiency,and anti-jamming capability due to its helical phase fronts and infinite orthogonal states.Although the OAM research began in the 1990s,the developing trends,current status,issues and characteristics through a systematic observation have not yet been performed.This paper presents a knowledge-based evolution of OAM research published in the Web of Science(WoS)from 2011 to 2021 using bibliometric analysis in Citepspace.The results demonstrate that the bandwidth,efficiency,gain,divergence,phase quantization,bulky and complex feeding structures,misalignment,distortion,interferences atmospheric turbulence and diffraction were the key issues found in the OAM technology.The main research hotspots and categories,influential authors,leading journals,best institutions of OAM show a strong bias in favor of their functions and technology developments.The research on OAM was mainly performed by the counties that have developed the 5G and now moving towards 6G communications like China,USA and South Korea.This study would serve as an inclusive guide on the future research trends and status especially for the OAM researchers.展开更多
Circular aperture antenna recently has been regarded as a nature source to generate high power radio orbital angular momentum (OAM) in millimeter (mm) wave; however, the radiation pattern was not investigated. The...Circular aperture antenna recently has been regarded as a nature source to generate high power radio orbital angular momentum (OAM) in millimeter (mm) wave; however, the radiation pattern was not investigated. Theoretical derivation of radiation pattern of circular aperture OAM antenna is conducted to evaluate the performance. Extensive simulations verify the validity of the theoretical result. Furthermore, performance of such antenna excited by orthogonal TE and TM modes is compared, which shows the potential application for TEgl mode to create pure OAM g-1 mode in a practical system, providing guidance for generation of twisted radio waves in mm-wave bands.展开更多
Optical vortices have the main features of helical wavefronts and spiral phase structures,and carry orbital angular momentum.This special structure of visible light has been produced and studied for various applicatio...Optical vortices have the main features of helical wavefronts and spiral phase structures,and carry orbital angular momentum.This special structure of visible light has been produced and studied for various applications.These notable characteristics of photons were also tested in the extreme-ultraviolet and X-ray regimes.In this article,we simulate the use of a simple afterburner configuration by directly adding helical undulators after the SASE undulators with the Shanghai Soft X-ray FEL to generate high intensity X-ray vortices with wavelengths^1 nm.Compared to other methods,this approach is easier to implement,cost-effective,and more efficient.展开更多
Studying orbital angular momentum(OAM) spectra is important for analyzing crosstalk in free-space optical(FSO)communication systems. This work offers a new method of simplifying the expressions for the OAM spectra...Studying orbital angular momentum(OAM) spectra is important for analyzing crosstalk in free-space optical(FSO)communication systems. This work offers a new method of simplifying the expressions for the OAM spectra of Laguerre-Gaussian(LG) beams under both weak/medium and strong atmospheric turbulences. We propose fixing the radius to the extreme point of the intensity distribution, review the expression for the OAM spectrum under weak/medium turbulence,derive the OAM spectrum expression for an LG beam under strong turbulence, and simplify both of them to concise forms.Then, we investigate the accuracy of the simplified expressions through simulations. We find that the simplified expressions permit accurate calculation of the OAM spectrum for large transmitted OAM numbers under any type of turbulence. Finally,we use the simplified expressions to analytically address the broadening of the OAM spectrum caused by atmospheric turbulence. This work should contribute to the concise theoretical derivation of analytical expressions for OAM channel matrices for FSO-OAM communications and the analytical study of the laws governing OAM spectra.展开更多
Many papers have been published on the study of orbital angular momentum(OAM)of the laser modes based on the Laguerre-Gaussian(LG)beam and helical phase plate or rotating cylindrical lens,and the principal ray of the ...Many papers have been published on the study of orbital angular momentum(OAM)of the laser modes based on the Laguerre-Gaussian(LG)beam and helical phase plate or rotating cylindrical lens,and the principal ray of the LG beam remains straight line.These ways are difficult to get a large OAM modes.In this paper,we propose a novel method to prepare a large OAM modes when the light propagates through a optical fiber winding around a curved path,and establish a theoretical framework based on the principal ray path changing.Firstly,we investigate three kinds of winding structure.Secondly,based on the analytical solutions and numerical calculations,we can find that the spiral body can achieve a large OAM temporal pulse.At the same time,based on the zero OAM diffraction diagram,we can obtain an improvement of resolving power beyond Rayleigh’s criterion.Finally,applying a large OAM diffraction pattern to realize 12-bitencodes,we can obtain a high-security optical information transfer system.展开更多
We propose a quantum multiple access communications scheme using Orbital Angular Momentum (OAM) sector states in the paper. In the scheme, each user has an individual modified Poincare Bloch sphere and encodes his inf...We propose a quantum multiple access communications scheme using Orbital Angular Momentum (OAM) sector states in the paper. In the scheme, each user has an individual modified Poincare Bloch sphere and encodes his information with his own corresponding sector OAM states. A prepared entangled photon pairs are separated at transmitter and receiver. At the transmitter, each user encodes his information with the sector OAM states on the photons and the superposition of the different sector OAM states is carried by the photons. Then the photons are transmitted through quantum noiseless channel to the receiver. At the receiver, each user could retrieve his information by coincidently measuring the transmitted photons with the receiver side photons which are modulated by a special prepared measurement basis. The theoretical analysis and the numerical simulations show that each user could get his information from the superposition state without error. It seems that this scheme provides a novel method for quantum multiple users communications.展开更多
Given the enhanced channel capacity of wave chirality,acoustic communications based on the orbital angular momentum(OAM)of acoustic-vortex(AV)beams are of significant interest for underwater data transmissions.However...Given the enhanced channel capacity of wave chirality,acoustic communications based on the orbital angular momentum(OAM)of acoustic-vortex(AV)beams are of significant interest for underwater data transmissions.However,the stringent beam alignment is required for the coaxial arrangement of transceiver arrays to ensure the accuracy and reliability of OAM decoding.To avoid the required multiple measurements of the traditional orthogonality based algorithm,the beam alignment algorithm based on the OAM spectrum decomposition is proposed for AV communications by using simplified ring-arrays.Numerical studies of the single-OAM and OAM-multiplexed AV beams show that the error of the OAM spectrum increases with the translation distance and the deflection angle of the transceiver arrays.To achieve an ideal arrangement,two methods of the single-array translation alignment and the dual-array deflection alignment are developed based on the least standard deviation of the OAM spectrum(SD-OAM).By decreasing the SD-OAM towards zero using transceiver arrays of 16 transmitters and 16 receivers,accurate beam alignments are accomplished by multiple adjustments in three dimensions.The proposed method is also demonstrated by experimental measurements of the OAM dispersion and the SD-OAM for misaligned beams.The results demonstrate the feasibility of the rapid beam alignment based on the OAM spectrum decomposition by using simplified transceiver ring-arrays,and suggest more application potentials for acoustic communications.展开更多
Antenna array is one of the methods which can generate Orbital Angular Momentum(OAM)waves.However,OAM waves generated by different antenna arrays have different characteristics of Electric-field(E-field)com-ponents...Antenna array is one of the methods which can generate Orbital Angular Momentum(OAM)waves.However,OAM waves generated by different antenna arrays have different characteristics of Electric-field(E-field)com-ponents'distribution and radiation patterns.In order to solve this problem,we derive E-feld formulas of OAM waves generated by different kinds of dipole antenna array in this paper.The dipole antenna arrays are arranged by three methods:1)antenna elements are in the same direction of y axis,2)antenna elements are in the radial direction and 3)antenna elements are in the azimuthal direction.Results show that x components,y components and z components carry different OAM modes under the three conditions.Simulation results show that the same direction antenna array produces the best OAM waves because the y component is dominated by OAM mode l and RHCP/LHCP waves are negligible in energy,while the pure OAM waves carried by the z components generated by the other two antenna arrays have little energy.In addition,only the radiation pattern ofl=0 produced by the same direction antenna array does not have a null zone in the propagation direction.Radiation patterns of l=±1 do not have null zones in the propagation direction generated by other two antenna arrays.展开更多
This article presents the generation of Orbital AngularMomentum(OAM)vortex waves with mode 1 using Uniform Circular Array(UCA)antenna.Two different designs,namely,UCA-1(4-element array antenna)and UCA-2(8-element arra...This article presents the generation of Orbital AngularMomentum(OAM)vortex waves with mode 1 using Uniform Circular Array(UCA)antenna.Two different designs,namely,UCA-1(4-element array antenna)and UCA-2(8-element array antenna),were designed and fabricated using FR-4 substrate to generate OAM mode 1 at 3.5 GHz(5G mid-band).The proposed antenna arrays comprised rectangular microstrip patch elements with inset fed technique.The elements were excited by a carefully designed feeding phase shift network to provide similar output energy at output ports with desired phase shift value.The generated OAM waves were confirmed by measuring the null in the bore sight of their 2D radiation patterns,simulated phase distribution and intensity distribution.The measurement results agree well with the simulation results.Moreover,a detailed mode purity analysis of the generated OAM waves was carried out considering different factors.The investigation found that the greater the number of elements,the higher the purity of the generated OAM wave.Compared with other previous works,the proposed antenna design of this paper is very simple to design and fabricate.In addition,the proposed antennas are compact in design even at lower frequency band with very wide bandwidth to meet the requirements of 5G mid-band applications.展开更多
The circular phased antenna array is commonly used for generating waves bearing Orbital Angular Momentum (OAM) in the radio frequency band, but it achieves a relatively low directivity. To overcome this drawback, we p...The circular phased antenna array is commonly used for generating waves bearing Orbital Angular Momentum (OAM) in the radio frequency band, but it achieves a relatively low directivity. To overcome this drawback, we present here a method to improve the directivity of an OAM circular phased antenna array by embedding it inside a Fabry-Perot cavity. The Fabry-Perot cavity contains three main parts: a partially reflecting surface (PRS), an air cavity and a ground plane. Simulation data show that the directivity of this new OAM antenna achieves an improvement of 8.2 dB over the original array. A prototype is realized and characterized. The simulated and measured characteristics are in good agreement.展开更多
The extreme ultraviolet(XUV)light beam carrying orbital angular momentum(OAM)can be produced via high-order harmonic generation(HHG)due to the interaction of an intense vortex infrared laser and a gas medium.Here we s...The extreme ultraviolet(XUV)light beam carrying orbital angular momentum(OAM)can be produced via high-order harmonic generation(HHG)due to the interaction of an intense vortex infrared laser and a gas medium.Here we show that the OAM spectrum of vortex HHG can be readily tailored by varying the radial node(from 0 to 2)in the driving laser consisting of two mixed Laguerre-Gaussian(LG)beams.We find that due to the change in spatial profile of HHG,the distribution range of the OAM spectrum can be broadened and its shape can be modified by increasing the radial node.We also show that the OAM mode range becomes much wider and its distribution shape becomes more symmetric when the harmonic order is increased from the plateau to the cutoff when the driving laser has the nonzero radial nodes.Through the map of coherence length and the evolution of harmonic field in the medium,we reveal that the favorable off-axis phase-matching conditions are greatly modified due to the change of intensity and phase distributions of driving laser with the radial node.We anticipate this work to stimulate some interests in generating the XUV vortex beam with tunable OAM spectrum through the gaseous HHG process achieved by manipulating the mode properties of the driving laser beam.展开更多
Orbital Angular Momentum(OAM)is an intrinsic feature of electromagnetic waves which has recently found many applications in several areas in radio and optics.In this paper,we use OAM wave characteristics to present a ...Orbital Angular Momentum(OAM)is an intrinsic feature of electromagnetic waves which has recently found many applications in several areas in radio and optics.In this paper,we use OAM wave characteristics to present a simple method for beam steering over both elevation and azimuth planes.The design overcomes some limitations of traditional steering methods,such as limited dynamic range of steering,the design complexity,bulky size of the steering structure,the limited bandwidth of operation,and low gain.Based on OAM wave characteristics,the proposed steering method avoids design complexities by adopting a simple method for generating the OAM-carrying waves.The waves are generated by an array of Planar Circular Dipole(PCD)elements.These elements are designed to cover a wide bandwidth range between 3 and 30 GHz.The transmitting array shows an enhanced gain value from 8.5 dBi to almost 11.5 dBi at the broadside angle.Besides the enhanced PCD-based OAM generation,the novelty of the design lies in a new method of beam steering.Beam steering is then performed by controlling the electrical feeding of the PCD elements;the beam azimuthal location is managed by turning off some of the PCD elements,while the elevation is determined by changing the gradient phase of excitation for the turned-on PCD elements.Detailed analysis of the steering method is carried out by finding the mathematical model of the system and the generated waves.The performance has been verified through numerical simulators.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.62375140 and 61871234)the Open Research Fund of National Laboratory of Solid State Microstructures(Grant No.M36055).
文摘Orbital angular momentum(OAM)holography has become a promising technique in information encryption,data storage and opto-electronic computing,owing to the infinite topological charge of one single OAM mode and the orthogonality of different OAM modes.In this paper,we propose a novel OAM hologram generation method based on a densely connected U-net(DCU),where the densely connected convolution blocks(DCB)replace the convolution blocks of the U-net.Importantly,the reconstruction process of the OAM hologram is integrated into DCU as its output layer,so as to eliminate the requirement to prepare training data for the OAM hologram,which is required by conventional neural networks through an iterative algorithm.The experimental and simulation results show that the OAM hologram can rapidly be generated with the well-trained DCU,and the reconstructed image's quality from the generated OAM hologram is significantly improved in comparison with those from the Gerchberg-Saxton generation method,the Gerchberg-Saxton based generation method and the U-net method.In addition,a 10-bit OAM multiplexing hologram scheme is numerically demonstrated to have a high capacity with OAM hologram.
基金supported by the project of 61971051 from the National Natural Science Foundation of China (NSFC)。
文摘Orbital angular momentum(OAM)technology,refers to Laguerre-Gaussian(LG)beams,twisted beams,vector/vortex beams,acoustic vortex beams and fractional vortex beams.It is an emerging and promising technology to improve the communication capacity,spectral efficiency,and anti-jamming capability due to its helical phase fronts and infinite orthogonal states.Although the OAM research began in the 1990s,the developing trends,current status,issues and characteristics through a systematic observation have not yet been performed.This paper presents a knowledge-based evolution of OAM research published in the Web of Science(WoS)from 2011 to 2021 using bibliometric analysis in Citepspace.The results demonstrate that the bandwidth,efficiency,gain,divergence,phase quantization,bulky and complex feeding structures,misalignment,distortion,interferences atmospheric turbulence and diffraction were the key issues found in the OAM technology.The main research hotspots and categories,influential authors,leading journals,best institutions of OAM show a strong bias in favor of their functions and technology developments.The research on OAM was mainly performed by the counties that have developed the 5G and now moving towards 6G communications like China,USA and South Korea.This study would serve as an inclusive guide on the future research trends and status especially for the OAM researchers.
文摘Circular aperture antenna recently has been regarded as a nature source to generate high power radio orbital angular momentum (OAM) in millimeter (mm) wave; however, the radiation pattern was not investigated. Theoretical derivation of radiation pattern of circular aperture OAM antenna is conducted to evaluate the performance. Extensive simulations verify the validity of the theoretical result. Furthermore, performance of such antenna excited by orthogonal TE and TM modes is compared, which shows the potential application for TEgl mode to create pure OAM g-1 mode in a practical system, providing guidance for generation of twisted radio waves in mm-wave bands.
基金supported by the National Development and Reform Commission(20132347)National Basic Research Program of China(No.2015CB859700)。
文摘Optical vortices have the main features of helical wavefronts and spiral phase structures,and carry orbital angular momentum.This special structure of visible light has been produced and studied for various applications.These notable characteristics of photons were also tested in the extreme-ultraviolet and X-ray regimes.In this article,we simulate the use of a simple afterburner configuration by directly adding helical undulators after the SASE undulators with the Shanghai Soft X-ray FEL to generate high intensity X-ray vortices with wavelengths^1 nm.Compared to other methods,this approach is easier to implement,cost-effective,and more efficient.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61575027 and 61471051)
文摘Studying orbital angular momentum(OAM) spectra is important for analyzing crosstalk in free-space optical(FSO)communication systems. This work offers a new method of simplifying the expressions for the OAM spectra of Laguerre-Gaussian(LG) beams under both weak/medium and strong atmospheric turbulences. We propose fixing the radius to the extreme point of the intensity distribution, review the expression for the OAM spectrum under weak/medium turbulence,derive the OAM spectrum expression for an LG beam under strong turbulence, and simplify both of them to concise forms.Then, we investigate the accuracy of the simplified expressions through simulations. We find that the simplified expressions permit accurate calculation of the OAM spectrum for large transmitted OAM numbers under any type of turbulence. Finally,we use the simplified expressions to analytically address the broadening of the OAM spectrum caused by atmospheric turbulence. This work should contribute to the concise theoretical derivation of analytical expressions for OAM channel matrices for FSO-OAM communications and the analytical study of the laws governing OAM spectra.
基金supported by the National Natural Science Foundation of China(Grant No.11504074)the State Key Laboratory of Quantum Optics and Quantum Optics Devices,Shanxi University(Grant No.KF202004).
文摘Many papers have been published on the study of orbital angular momentum(OAM)of the laser modes based on the Laguerre-Gaussian(LG)beam and helical phase plate or rotating cylindrical lens,and the principal ray of the LG beam remains straight line.These ways are difficult to get a large OAM modes.In this paper,we propose a novel method to prepare a large OAM modes when the light propagates through a optical fiber winding around a curved path,and establish a theoretical framework based on the principal ray path changing.Firstly,we investigate three kinds of winding structure.Secondly,based on the analytical solutions and numerical calculations,we can find that the spiral body can achieve a large OAM temporal pulse.At the same time,based on the zero OAM diffraction diagram,we can obtain an improvement of resolving power beyond Rayleigh’s criterion.Finally,applying a large OAM diffraction pattern to realize 12-bitencodes,we can obtain a high-security optical information transfer system.
基金Supported by the National Natural Science Foundation of China(No.61271238)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20123223110003)+1 种基金the University Natural Science Research Foundation of Jiangsu Province(No.11KJA510002)the Open Research Fund of National Laboratory of Solid State Microstructures(M25020,M25022)
文摘We propose a quantum multiple access communications scheme using Orbital Angular Momentum (OAM) sector states in the paper. In the scheme, each user has an individual modified Poincare Bloch sphere and encodes his information with his own corresponding sector OAM states. A prepared entangled photon pairs are separated at transmitter and receiver. At the transmitter, each user encodes his information with the sector OAM states on the photons and the superposition of the different sector OAM states is carried by the photons. Then the photons are transmitted through quantum noiseless channel to the receiver. At the receiver, each user could retrieve his information by coincidently measuring the transmitted photons with the receiver side photons which are modulated by a special prepared measurement basis. The theoretical analysis and the numerical simulations show that each user could get his information from the superposition state without error. It seems that this scheme provides a novel method for quantum multiple users communications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11934009,11974187,and 12174198)
文摘Given the enhanced channel capacity of wave chirality,acoustic communications based on the orbital angular momentum(OAM)of acoustic-vortex(AV)beams are of significant interest for underwater data transmissions.However,the stringent beam alignment is required for the coaxial arrangement of transceiver arrays to ensure the accuracy and reliability of OAM decoding.To avoid the required multiple measurements of the traditional orthogonality based algorithm,the beam alignment algorithm based on the OAM spectrum decomposition is proposed for AV communications by using simplified ring-arrays.Numerical studies of the single-OAM and OAM-multiplexed AV beams show that the error of the OAM spectrum increases with the translation distance and the deflection angle of the transceiver arrays.To achieve an ideal arrangement,two methods of the single-array translation alignment and the dual-array deflection alignment are developed based on the least standard deviation of the OAM spectrum(SD-OAM).By decreasing the SD-OAM towards zero using transceiver arrays of 16 transmitters and 16 receivers,accurate beam alignments are accomplished by multiple adjustments in three dimensions.The proposed method is also demonstrated by experimental measurements of the OAM dispersion and the SD-OAM for misaligned beams.The results demonstrate the feasibility of the rapid beam alignment based on the OAM spectrum decomposition by using simplified transceiver ring-arrays,and suggest more application potentials for acoustic communications.
基金This study was supported by the National Natural Science Foundation of China(NSFC 61771213)Shanghai Aerospace Science and Technology Innovation Fund(SAST2017-113)the Fundamental Research Funds for the Central Universities(HUST2016JCTD203,2018KFYYXJJ140).
文摘Antenna array is one of the methods which can generate Orbital Angular Momentum(OAM)waves.However,OAM waves generated by different antenna arrays have different characteristics of Electric-field(E-field)com-ponents'distribution and radiation patterns.In order to solve this problem,we derive E-feld formulas of OAM waves generated by different kinds of dipole antenna array in this paper.The dipole antenna arrays are arranged by three methods:1)antenna elements are in the same direction of y axis,2)antenna elements are in the radial direction and 3)antenna elements are in the azimuthal direction.Results show that x components,y components and z components carry different OAM modes under the three conditions.Simulation results show that the same direction antenna array produces the best OAM waves because the y component is dominated by OAM mode l and RHCP/LHCP waves are negligible in energy,while the pure OAM waves carried by the z components generated by the other two antenna arrays have little energy.In addition,only the radiation pattern ofl=0 produced by the same direction antenna array does not have a null zone in the propagation direction.Radiation patterns of l=±1 do not have null zones in the propagation direction generated by other two antenna arrays.
基金supported by Ministry of Higher Education through the FundamentalResearch Grant Scheme(FRGS)under a grant number of FRGS/1/2020/ICT09/UNIMAP/02/2.
文摘This article presents the generation of Orbital AngularMomentum(OAM)vortex waves with mode 1 using Uniform Circular Array(UCA)antenna.Two different designs,namely,UCA-1(4-element array antenna)and UCA-2(8-element array antenna),were designed and fabricated using FR-4 substrate to generate OAM mode 1 at 3.5 GHz(5G mid-band).The proposed antenna arrays comprised rectangular microstrip patch elements with inset fed technique.The elements were excited by a carefully designed feeding phase shift network to provide similar output energy at output ports with desired phase shift value.The generated OAM waves were confirmed by measuring the null in the bore sight of their 2D radiation patterns,simulated phase distribution and intensity distribution.The measurement results agree well with the simulation results.Moreover,a detailed mode purity analysis of the generated OAM waves was carried out considering different factors.The investigation found that the greater the number of elements,the higher the purity of the generated OAM wave.Compared with other previous works,the proposed antenna design of this paper is very simple to design and fabricate.In addition,the proposed antennas are compact in design even at lower frequency band with very wide bandwidth to meet the requirements of 5G mid-band applications.
文摘The circular phased antenna array is commonly used for generating waves bearing Orbital Angular Momentum (OAM) in the radio frequency band, but it achieves a relatively low directivity. To overcome this drawback, we present here a method to improve the directivity of an OAM circular phased antenna array by embedding it inside a Fabry-Perot cavity. The Fabry-Perot cavity contains three main parts: a partially reflecting surface (PRS), an air cavity and a ground plane. Simulation data show that the directivity of this new OAM antenna achieves an improvement of 8.2 dB over the original array. A prototype is realized and characterized. The simulated and measured characteristics are in good agreement.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12274230,91950102,and 11834004)the Funding of Nanjing University of Science and Technology (Grant No.TSXK2022D005)。
文摘The extreme ultraviolet(XUV)light beam carrying orbital angular momentum(OAM)can be produced via high-order harmonic generation(HHG)due to the interaction of an intense vortex infrared laser and a gas medium.Here we show that the OAM spectrum of vortex HHG can be readily tailored by varying the radial node(from 0 to 2)in the driving laser consisting of two mixed Laguerre-Gaussian(LG)beams.We find that due to the change in spatial profile of HHG,the distribution range of the OAM spectrum can be broadened and its shape can be modified by increasing the radial node.We also show that the OAM mode range becomes much wider and its distribution shape becomes more symmetric when the harmonic order is increased from the plateau to the cutoff when the driving laser has the nonzero radial nodes.Through the map of coherence length and the evolution of harmonic field in the medium,we reveal that the favorable off-axis phase-matching conditions are greatly modified due to the change of intensity and phase distributions of driving laser with the radial node.We anticipate this work to stimulate some interests in generating the XUV vortex beam with tunable OAM spectrum through the gaseous HHG process achieved by manipulating the mode properties of the driving laser beam.
文摘Orbital Angular Momentum(OAM)is an intrinsic feature of electromagnetic waves which has recently found many applications in several areas in radio and optics.In this paper,we use OAM wave characteristics to present a simple method for beam steering over both elevation and azimuth planes.The design overcomes some limitations of traditional steering methods,such as limited dynamic range of steering,the design complexity,bulky size of the steering structure,the limited bandwidth of operation,and low gain.Based on OAM wave characteristics,the proposed steering method avoids design complexities by adopting a simple method for generating the OAM-carrying waves.The waves are generated by an array of Planar Circular Dipole(PCD)elements.These elements are designed to cover a wide bandwidth range between 3 and 30 GHz.The transmitting array shows an enhanced gain value from 8.5 dBi to almost 11.5 dBi at the broadside angle.Besides the enhanced PCD-based OAM generation,the novelty of the design lies in a new method of beam steering.Beam steering is then performed by controlling the electrical feeding of the PCD elements;the beam azimuthal location is managed by turning off some of the PCD elements,while the elevation is determined by changing the gradient phase of excitation for the turned-on PCD elements.Detailed analysis of the steering method is carried out by finding the mathematical model of the system and the generated waves.The performance has been verified through numerical simulators.